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We propose a latent adaptive structure-aware generative language
model for universal information extraction.

» Introduction

Universally modeling all typical information extraction tasks (UIE)
with one generative language model (GLM) has revealed great poten-
tial by the latest study, where various IE predictions are unified into
a linearized hierarchical expression under a GLM. Syntactic structure
information, a type of eflective feature which has been extensively uti-
lized in IE community, should also be beneficial to UIE. In this work,
we propose a novel structure-aware GLM, fully unleashing the power
of syntactic knowledge for UIE. A heterogeneous structure inductor is
explored to unsupervisedly induce rich heterogeneous structural repre-
sentations by post-training an existing GLM. In particular, a structural
broadcaster is devised to compact various latent trees into explicit high-
order forests, helping to guide a better generation during decoding. We
finally introduce a task-oriented structure fine-tuning mechanism, fur-
ther adjusting the learned structures to most coincide with the end-
task’s need. Over 12 IE benchmarks across 7 tasks our system shows
significant improvements over the baseline UIE system. Further in-
depth analyses show that our GLM learns rich task-adaptive structural
bias that greatly resolves the UIE crux, the long-range dependence issue
and boundary identifying.
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Figure 1: We reduce all the IE tasks into three prototypes (a) with representative
examples (b). We unify all IEs with an encoder-decoder GLM (c). Both syntactic
dependency (d) and constituency structure (e) plays a key but distinct role in IE,
where the former helps solve long-range dependence problem and the latter benefits
boundary detection issue.

Key points:

1. We propose a latent adaptive structure-aware generative language
model for UIE (namely LasUIE).

2. We reduce UIE into three uniform prototypes, upon which we
transform the UIE into generative paradigm with an encoder-
decoder GLM, predicting the linearized hierarchical expression, i.e.,
spans&attributes, relations&types, as shown in Fig. 1(c)).

3. We adopt a three-stage of LM training procedure, where an ad-
ditional structure-aware post-training is added between the pre-
training and fine-tuning stages for structure learning.

4. We design a heterogeneous structure inductor (HSI) module, where
two heterogeneous syntactic structures are simultaneously measured

and automatically learned. With HSI, our GLM during post-training
performs unsupervised syntax induction based on unlabeled texts
without relying on external syntax parses or any annotation labor.

5. We turther enhance the utility of syntax by introducing a structural
broadcaster (SB) module. SB compacts multiple varying latent trees
from different encoding attention heads into an explicit constituency-
like and a dependency-like forest respectively. During each decoding
step, two heterogeneous syntactic forests are utilized to produce high-
order features at global level for guiding better content generation.

6. Finally, during the prompt-based fine-tuning stage we perform task-
oriented structure adaptive tuning to narrow the gaps between the
induced syntactic and task-specific structures. With policy gradient
we dynamically adjust the attributes of two heterogeneous structures
according to the feedback of end task performance.

» Unsupervised Structure-aware Post-training

The overall framework is built upon a Transformer-based encoder-
decoder GLM, based on which we additionally add 1) a heterogeneous
structure inductor module at top of the encoder for structural learning,
2) a structural broadcaster module between GLM encoder and decoder
for enhancing the structural feature utility. Fig. 2 shows the overall
framework of our proposed LasUIE.
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Figure 2: Overall LasUIE framework.

Heterogeneous structure inductor module generates both  con-
stituency and dependency structures via two heterogeneous syntax
measurements Fig. 2(b).

Structural broadcaster module compacts multiple varying latent trees
from different encoding attention heads into an explicit constituency-
like and a dependency-like forest respectively:.

» Task-oriented Structure Fine-tuning

Finally, during the prompt-based fine-tuning stage we perform task-
oriented structure adaptive tuning to narrow the gaps between the
induced syntactic and task-specific structures. With policy gradient
we dynamically adjust the attributes of two heterogeneous structures
according to the feedback of end task performance.
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Figure 3: Fine-tuning our GLM with structure adaptive learning.

» Lxperiments

(1) Main Results

LasUIE consistently outperforms the baseline UIE and other SoTA
models on all tasks in both two learning scenarios under both the Large
or Base 1’5 initiations.

| Span Extraction | Pair Extraction \Hyper-pair Extraction |
Task&Data vg.

| NER | RE AOP ASTE|/ORL SRL EE r4

|CONLL03 OntoNote ACE04 ACEQ5 ‘CDNLL(M NYT ACEO5 Res14 Resl14 ‘MPQA CoNLL12 ACEOD5 |
e Separate IE
M1 SoTA* 93.2 919 86.8 84.7 | 73.6 927 65.6 693 736|530 735 483 [I55
M2 GEN-T5 91.0 89.1 843 B83.0 | 694 903 60.2 625 71.8 498 693 437 |72.0
M3 +DepSyn 91.5 89.5 849 834 | 703 91.8 624 643 72.6 | 515 T70.8 455 (732
M4  +ConSyn 92.1 90.0 853 838 | 69.8 909 61.5 63.1 723 |50.7 70.1 443 [72.8
M5  +Dep&ConSyn| 92.3 904 853 840 | 71.2 9211 633 66.0 73.0 |51.8 713 462 (739
e Unified IE
M6 UIE* 93.0 / 869 858 | 750 / 660 / 745 | / / / /
M7 UIE* 92.1 / 86.5 855 | 73.1 935 647 / / / / / /
M8 LasUIE* (Ours) | 93.2 93.0 868 86.0 | 753 942 664 73.6 752|578 763 517 774
M9 UIE 91.4 89.7 850 835 | 705 910 61.6 65.8 72.8 |50.8 70.2 446 |[73.1
M10  +DepSyn 91.8 90.0 853 837 | 71.2 920 629 676 735|520 715 464 [74.0
M1l  +ConSyn 92.0 90.5 85.6 840 | 708 913 62.1 66.1 73.1 |51.3 71.0 452 |73.6
M12  +Dep&ConSyn| 92.3 90.7 858 845 | 71.7 924 634 682 737|536 726 47.0 (/4.6
M13 LasUIE (Ours) | 926 920 863 850 | 73.2 93.0 644 70.2 748 |56.0 74.7 49.0 [759
Ml14 w/oSB 92.0 90.7 855 842 | 715 91.8 629 683 734|547 734 477 [14.6
M15 w/loLspr 92.2 916 862 848 | 72.8 924 64.1 700 744 | 555 740 48.6 [75.6
M16 w/oLrs 92.4 914 859 847 | 71.8 920 63.6 69.1 73.6 | 542 73.0 47.1 (749

Figure 4. Overall IE performances by different methods.

| Span Extraction | Pair Extraction IHyper—pair Extraction |
Task&Data Avg.
| NER | RE AOP ASTE|ORL  SRL  EE |
| CONLLO3 OntoNote ACE04 ACE0S [CoNLLO4 NYT ACEOS Res14 Res14 [MPQA CoNLL12 ACEOS |
e [-shot
UIEf 46.4 / / / 22.1 / ! / / / / / /
GEN-T5+Dep&ConSyn| 27.2 20.4 148 17.6 8.2 25.7 108 128 108 | 1.1 6.5 1.5 |[13.1
UIE+Dep&ConSyn 30.3 23.6 17.5 20.7 128 26.7 143 16.7 13.0 | 2.8 14.0 38 |164
LasUIE 394 47.6 385 44.7 25.7 45.0 26.7 30.0 384 | 189 328 23.7 343
e 10-shot oo o
UIET 73.9 / / f 52.4 / / / / / / / /
GEN-T5+Dep&ConSyn| 67.4 647 492 528 456 508 374 197 178 | 54 18.7 12.2 |36.8
UIE+Dep&ConSyn 69.5 68.4 528 54.1 51.8 56.0 43.8 225 26.1 | 10.5 23.2 176 |41.4
LasUIE 74.0 78.3 603 65.3 55.0 67.7 46.1 424 48.8 | 254 458 27.1 [53.0
e 1% data
UIET 82.8 / / / 30.8 / ! / / / / / /
GEN-T5+Dep&ConSyn| 79.5 724 583 61.7 17.8 35.8 154 153 153 | 3.3 10.7 34 |324
UIE+Dep& ConSyn 80.6 73.2 604 638 235 404 227 206 185 ] 5.3 17.6 10.2 |36.4
LasUIE 82.1 845 65.7 70.1 32.0 53.6 342 348 41.7 | 21.0 398 257 |48.8
* 10% data '
UIEf 89.6 / / / 59.2 / / / / / / / /
GEN-T5+Dep&ConSyn| 89.0 &84.0 713 688 524 804 457 56.0 59.7 | 224  50.7 26.7 |58.9
UIE+Dep&ConSyn 89.3 85.8 T72.1 70.6 549 825 47.6 58.3 62.6 | 274 543 31.7 |64.4
LasUIE 91.6 89.3 83.6 81.7 60.8 86.0 50.5 63.0 66.7 | 36.0 584 384 |67.2

Figure 5: Performances on low-resource settings by IE models.
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(a) Error rate (%) on boundary recognition (b) Error rate (%) on relation detection

Figure 6: Error rates on boundary recognition and relation detection, respectively.
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Figure 7: Trajectories of the changing structure Figure 8: The distributions of the range of word-
agreement rates and densities during task-oriented word dependency link (words) in forest 72 and
structure fine-tuning, based on event extraction the constituency phrasal span width (words) in
(ACE05). X-axis is the iteration steps for fine- forest < on each data.

tuning. Bars means the task performances (F1).

(2) Analysis

% Q1: Can fusing syntax structure knowledge into GLM contribute to
UIE? Answer: Either in separate or unified IE setup, integrating addi-
tional linguistic syntax features into GLM improves IE performances.

* Q2: What are the differences to integrate the constituency and de-

pendency syntactic structure? Answer: On span extraction type IE

(i.e., NER) the improvements from constituency syntax prevail, and

the dependency type of structure features dominate the pair-wise tasks,
e., (hyper-)pair extraction.

% 3: For UIE, is it more advanced for GLM to automatically learn
latent structures than injecting external syntax parse trees? Answer:

Yes, it is advanced for LMs to automatically learn latent structure in-
formation for better UIE.

% 4: Is it necessary to further fine-tune the structures in GLM for

UIE? Answer: Yes, it is necessary to further fine-tune the structures in
GLM for UIE.

» Conclusion

This work investigates developing a novel structure-aware generative
language model (GLM) that learns rich heterogeneous syntactic struc-
ture representations for better unified information extraction (UIE).
First, a well pre-trained GLM is taken as backbone to reach the goal ot
UIE, feeding with label prompt-based texts and predicting linearized
hierarchical expressions that describe the actual IE target. During post-
training, the proposed heterogeneous structure inductor automatically
generates rich structure information without relying on any additional
syntax annotation. A structural broadcaster then compacts various
trees into forests for enhancing the structural feature utility and guid-
ing better context generation. The learned structural knowledge is
further fine-tuned on the in-house training data so as to adapt into
the task-specific need. Extensive experiments and in-depth analyses
demonstrate the efficacy of our system on improving the UIE.



