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Vision&Language Scene Graphs

B Scene Graph Representation

» Visual Scene Graph (VSG)

* Representing visual content into semantic structured representation:

female —> in = shirt

4
Bk play_ dark blue
Pl N
playground < sit <+ people = watch = lacrosse
A4
greeni.  m play  white
female —> in — shirt
4

white

Visual Scene Graph (VSG)

[1] Justin Johnson, etc, and Li Fei-Fei. Image retrieval using scene graphs. CVPR. 2015.
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Vision&Language Scene Graphs

B Scene Graph Representation

» VSG Parsing

* Object detection

e.g., FasterRCNN

e Relation classification

egq., MOTIFS /fcmah:(‘in — shirt

4
ol play_ dark blue
il N

playground <= sit 4 people = watch = lacrosse

e Attribute classification

gteen) play  white
female = in — shirt
e.g., MOTIFS ki
Visual Scene Graph (VSG)
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Vision&Language Scene Graphs

B Scene Graph Representation

» lLanguage Scene Graph (L.SG)

* Representing textual inputs into semantic structured representation:

one female in a dark
blue shirt and the other
female in a white shirt
are playing lacrosse.

female = in — shirt

)
play \Ld ark blue

lacrosse
- .
play Wlllu:

female = in — shirt

Language Scene Graph (LSG),

[1] Yu-Siang Wang, etc. Scene graph parsing as dependency parsing. NAACL. 2018.
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Vision&Language Scene Graphs

B Scene Graph Representation

» LSG Parsing

one female in a dark

o Dependency Parsing k_)lue shi.rt and 1_'he oL:her
female in a white shirt

e.g., Stanford Parser e Plann g | eeesse:

e Rule-based Conversion ( )

female == in — shirt

. . . . \ +
e.g., hsubj->object, adj->attribute play _ dark blue
lacrosse
play‘Ar w};ib:

female = in —> shirt

Language Scene Graph (LSG)




Vision&Language Scene Graphs

B Scene Graph Representation

» lLanguage Scene Graph (L.SG)
There are so many structured representations of languages

* Syntactic-level structure

VP

P

VP

NP PP NP-TMP

pkp _vhP 1O 1B PRP _ MW ﬁ\n pf M

I plan to visit my cousin in the hospital this weekend

Dependency tree

Constituency tree




Vision&Language Scene Graphs

B Scene Graph Representation

» lLanguage Scene Graph (L.SG)
There are so many structured representations of languages

e Semantic frame structure

20 Al \
vE YK NV

They, want, tos do, mores .




Vision&Language Scene Graphs

B Scene Graph Representation

» lLanguage Scene Graph (L.SG)
There are so many structured representations of languages

* Semantic graph structure

The Japanese Government stated on April 8, 2002 its policy of holding no nuclear warheads.

time X year
state-01 date-entity @

ARGO ARG month (s / state-01
° :ARGO (g / government-organization
:ARG1 (c / country
ARGO-of o :name (n2 / name :op1 "Japan"))))

:ARGT1 (p / policy
:poss g
:topic (h / hold-01 :polarity -
:ARG1 (w / warhead
:mod (n / nucleus))))
:time (d / date-entity :year 2002 :month 4 :day 8))

AMR graph PENMAN format
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Vision&Language Scene Graphs

B Scene Graph Representation

» lLanguage Scene Graph (L.SG)

Representing textual inputs into semantic structured representation:

one female in a dark
blue shirt and the other
female in a white shirt
are playing lacrosse.

- ~
female = in — shirt

)
play \-Ld ark blue

lacrosse
- .
play Wlllu:

female = in — shirt

Language Scene Graph (LSG),
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Vision&Language Scene Graphs

B Scene Graph Representation

» lLanguage Scene Graph (L.SG)

* Representing visual and textual inputs with VSG and LSG
> The intrinsic gap between Vision and Language one female ina dark

temale in a white shirt
are playing lacrosse.

g N

5 g female = in — shirt

. . . . . female = in — shirt
> Unifying the Vision and Language with * on R sk bise
! . . play_N*d’rlfk blue / \

a unified representation format: S6 _lacrosse |} playground <= sic <= people = watch— lctose

ey W},I'ltc green T on play  white

female = in — shirt female = in — shirt

4
white
[Language Scene Graph (LSG)) Visual Scene Graph (VSG)
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Vision&Language Scene Graphs

B Scene Graph Representation

» Why do SG features help improve vision-language learning?

1. Improving cross-modal alignment: |
. . . 3 one female in a dark
more fine-grained vision-text matching blu shirt and the other

temale in a white shirt
are playing lacrosse.

2. Enhancing multimodal fusion: [ g > i — s ) fome > i —> s
4 on
. . ark blue play_ dark blue
semantic-level feature learning playgoek b L >

gu. - oo playground < sit < people = watch—> lacrosse

play W};ltc green on play  white

female = in — shirt female = in = shirt

*
. . white
3. Mor € contr Oﬂable Cﬂd—taSk pr edlctl()ﬂ: Language Scene Graph (LSG)) Visual Scene Graph (VSG)

highly structured modal representation
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SG-based Cross-lingual Image Captioning Eeg*t

Application I:

CROSS?STRA: Unpaired Cross-lingual Image Captioning
with Cross-lingual Cross-modal Structure-pivoted Alignment

[1] Shengqiong Wu, Hao Fei, Wei Ji, Tat-Seng Chua. Cross2StrA: Unpaired Cross-lingual Image Captioning with Cross-lingual
Cross-modal Structure-pivoted Alignment. ACL. 2023.
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SG-based Cross-lingual Image Captioning Eg*T

B Motivation
» Cross-lingual Image captioning

How to develop the image captioner in other languages, i.e., resource-scare language?

v" The translation-based method
v" The pivoting-based method

Image-to-Pivot Pivot-to-Target

Capti ] . ' T lati !
Input lmage - =2 Pivot caption -===<2- > Target caption
. -- (SH1) —AF A Qit# i B s
5 EOF f5 2 B A fe—BE A SRS -
(S?) A boy in a white ®x J_ﬁA,;Hj_jF,, F IF_
T LA (A boy in a white shirr sty ar table in

shirt is S}__)t‘ﬂ.k_'lﬂg t(? a a park is speaking ro a group of people.)
group of people sitting
at table in front of a (SL2) ANFEHEaitH 0T BER
park. —BEABRE, A"l 2T B

(A boy in a white shirt Is speaking ro a group of
people, they are serting ar rable in fronr of a park.)
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SG-based Cross-lingual Image Captioning Eeg*t

B Motivation

* irrelevancy

* disfluency

Syntax Inconsistency

Pivot caption (87) Target caption (§2)
! Scene Inconsistency _ " tion (841 -""“"_"':_:=—“‘“'_:_:: _%.':-_-—-_._______’ 9 ________‘T,_._—————‘ ? "-——-._______\____
—— e NP/NP PP @ /ﬁ: | /PP QP ’f’?‘l:x““ NP aDw/E vP ‘CP{/]P\VF’
speak =+— boy —+<in >+ shirt speak +— h(l‘r:; < in >+ shirt B A Ly ) | = -"P‘_ra—.;!f_-_-— : ;-_-?:’__:hh_ C ' s % = /' <
]J-I:f;plr: wltitr pct:].ﬂt i w‘:it«: ';_'*- boy)lin] (2 '.“'hi:;T shi"f:! ! () (a) (group) Tof " NP, i I|'__-_—£_1E ﬂ-(/af‘;mh}ﬁ F_IEEHI/EMEMM &4 (k& ,_\'I'P\
x;( m;k people) VP T &EW (RF)(E
} P SRR
table ——=in front of —~— park in frofit of ~=— park siving | (at] [eable | [in]™ | front)(off (2] [park
Visual Scene Graph Language Scene Graph Syntactic Constituency Tree Svyntactic Constituency Tree
(b) Relevancy issue due to inconsistency of semantic scene (c) Inconsistency of syntax structures between pivot-target languages causes disfluent translation
modeling the vision-language modeling the pivot-target
semantic alignment syntax alignment

16



SG-based Cross-lingual Image Captioning Eeg*t

B Method

Target caption S'*

Residual _ ,1“\

A novel syntactic and semantic structure-guided model for
Connection '*

cross-lingual image captioning

4_,|

T —— Syntactic Structure-guided
VAR I " Translating ”F< Sp’SC>_>St

Syntactic Constituency
Structure Encoder

+

I

* For image-to-pivot captioning, we consider leveraging the
scene graphs (SG) for better image-text alignment

—_—

[ Pivot caption S°7 ]
4
8 ® . For the pivot-to-target translating, we make use of the
SR d—> Semantic Structure-guided syntactic constituency (SC) tree structures for better pivot-
Scene Graph Captioning F([,SG>—>SP

target language alignment.

Structure Encoder

!
[ Image [ J

l—

17




SG-based Cross-lingual Image Captioning Eeg*t

B Method

» Structure-Pivoting Cross-lingual Cross-modal Alignment Learning

Shared Syntax Constituency Structure Encoder * Cross-modal Semantic Structure Aligning

] ]
| I
i " -CCLA N : .
Y o WV \N /AN Y To encourage those text nodes and visual nodes that
: Cross-lingual Syntacti ! . - :
| SC? Structurs Alighment SCT : serve a similar role in the visual SG and language SG
| ]
T Target caption |,S'*
[ Pivot caption ]S P exp(@/ Tim)
' [ Image J I Loma = — Z log = ° c
_______ .l,________________________+______‘ ieSGY, j*eSG" O 4
) Cmss—mmdalﬁSemanﬁc e 0O O " Slm.llaI'
: VN ; Structure Alighment O ! . . . . pairs
i /. O 0 ' * Cross-lingual Syntactic Structure Ahgmong o
| SG* L cma SG” | xp() °
\_____Shared Scene Graph Structure Encoder Loia = Y log "XP(S;;" [7)

ieSCT, j=esSC?
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SG-based Cross-lingual Image Captioning

B Method

* Cross-modal&lingual Back-translation

To achieve the two-step alignment over the overall framework.

Gold pivot P ¢ Gold target
captlfon S S caption
ETPBi Ext%ngai frﬂy}sfaﬁ:or i JCPTB
. -to-Pivot . : -
Predicted 55 < (19 ’ <y, Predicted Gold pivot [ <, Predicted
pivot caption S 5" target caption caption S'" target caption
* : 2
¥ = W
D ﬁ{; £ &
X AN N g
& & 2 &0
4 <, S b
) - qp, )
L o - - § O
Oq- 9 ‘?dé [ A \I 0\} 9
Gold image — \J_l: ’
Predicted image
(a) Image-to-Pivot back-translation (b) Pivot-to-Target back-translation
given gold pairs of image-caption(pivot) {(I , Sr )} given gold pivot-target parallel sentences {(S P St ) }

SP_[— St SP St_SP [ St
Lipg = E[— logp(§p|Mt—>p(-7:I—>st (I)))] Lpr = E[— 10gp(§t|f1—>st (Msr1(57)))]
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SG-based Cross-lingual Image Captioning Eeg*t

B Experiment
» Transfer between MSCOCO and AIC-ICC

Zh — En En — Zh Avg
BLEU METEOR ROUGE CIDEr BLEU METEOR ROUGE CIDEr

o Translation-based methods
EarlyTranslation 48.3 15.2 27.2 18.7 43.6 20.3 30.3 14.2 27.2
LateTranslation 45.8 13.8 25.7 14.5 41.3 13.5 26.7 14.0 24.4
FG 46.3 12.5 25.3 15.4 43.0 19.7 29.7 15.7 25.9
SSRT 52.0 14.2 27.7 28.2 46.0 22 32.0 18.3 30.1

e Pivoting-based methods

PivotAlign 52.1 17.5 28.3 27.0 47.5 237 32.3 19.7 31.1
UNISON 54.3 18.7 30.0 284 48.7 25.2 33.7 21.9 324
CROSSZSTRA (Ours) 57.7 21.7 33.5 30.7 52.8 27.6 36.1 24.5 35.8
w/o SG 55.8 19.1 31.2 28.0 48.6 25.8 339 21.6 33.1
w/o SC 56.1 20.0 32.1 28.9 50.4 26.6 354 23.3 341
w/o ResiConn 56.4 21.2 32.9 29.4 51.8 27.1 359 24.1 34.9

Table 1: Transfer results between MSCOCO (En) and AIC-ICC (Zh). The values of SSR' are copied from Song
et al. (2019), while all the rest are from our implementations.

* Pivoting methods show overall better results than the translation ones

« CROSS?STRA outperforms all the other baselines with significantly

20



SG-based Cross-lingual Image Captioning Eeg*t

B Experiment

» Human Evaluation » Probing Cross-modal and Cross-lingual Structure Alignment
Relevancy? DiversificationT Fluency? SSR BB pivota lign UNISON
Fo 0-34 373 7.05 CROSS?STRA w/o SG w/o SC
SSR 7.86 5.89 7.58 —_ '
PivotAlign 8.04 6.57 1.46 E§ o0l - 1
UNISON 0.02 9.14 7.89 2 %
CROSSZSTRA 9.70¢ 9.53 9.22% H - 8
w/0 SG 8.35 7.75 9.04 wg 70 g - - .
wlo SC 9.42 8.34 8.07 @ A o |
w/o Lematleia  7.80 124 8.15 ; (a) Comparisons on scene graphs between
input vision and target caption
Table 4: Human evaluations are rated on a Likert 10- S -
scale. 1 indicates signiﬁ|cant better over the baselines Se 801~ - N
(p<0.03). 3 E 70 - : |
%2 60 . - =
2% sof T -B .
* Our system shows significantly higher scores than £ 2 - e -

(b) Comparisons on top-down constituency

baseline systems in terms of all three indicators. : :
structure between pivot and target captions

 With SG and SC structure features, the content
relevancy and diversification of captions are much better * Our system exhibit prominent structure alignment ability

21




SG-based Cross-lingual Image Captioning Eg*T

B Experiment

» Qualitative Result

Gt L — A R A AT E — &L e ki b — b R akeyiE ) i

FYIEy I Gold FHEHR

(A smiling child in grey shirt is squatting on the green grass) ﬁgg?ﬁfﬁ“&f b mnpsang for football with another football
AR~ AL EFURE F A

FAEA— A SR L LI L SSR (4 manis playinga football and 2 man in red)

(Siting o the grass there is a lietde g sitting on the ground) F%
EGEAHRG - AFTHERR - EFR
. UNISON 5 Ashé 6,69 %k
(O the preen football field, 2 man in whice and a man in red play a
white foothall)

—EFEGEHRE S A FHu e R iEa i

LAGEERENEFETFREE LR

(Siming on che green field is a kid wearinga gray coar)

Faa T LEF - fHaXESFREH
e HE

(A smiling kid in grey T-shirt is squatting on the green field)

—{a g A6 FiEsh A A LT R
girncui:[)a male player with a racket is playing tennis on

—AFATHEHAHM

(A man is holding a tennis racket)

—4 5§ i 8 AR5 H F A F

(A male achlete is waviig a tennis racket on the tennis court)

—fr & F G SR F HEsh { £ F

CROSS2STRA &ﬂ@ﬁ_kf‘-% ERER

player wr::mn.g awhite jersey and another p la}crwu:ann&-
]r::rsr:i are compenng for football on the green football fiel

wokdpk, —HFHFEEWHTOT L5 F T

Gold  F8y-dc A—dedbF7IE4FF ok

(O the skating rink, a man in black trousers and a woman in skint
are doing figure skanng opether)

FERAREFTREMENT AL LALF K

(Men and women in skates and costumes are zJi.ati.ng]

FHEERMSF AdeFRBT I ALT kg Lt

UNISON AFiE4FF ik

(The man in blue and the woman in skirt are fipore skadng on the
skating rink)

ARG IA-LHTEEIHEEEHTHT L

chomstorma A B0 LA CRossiSTRA Fr— b F & &72 500 k1 ] AR AL
(There is 2 male athlete in white clothes with a racker playing 5'S (On che skarng rink, 3 man in a blue shire m;blzck :fms and 2
tenfis o the blue court) womail ifi a blue skirt together perform figore skating)

Figure 7: Qualitative results of cross-lingual captioning. The instances are randomly picked from AIC-ICC (Zh).

» With SG structure features, the content relevancy and diversification of captions are much better

* Our system generate captions with good relevancy, diversification, and fluency 25



SG-based Multimodal Relation Extraction g%t

Application II:

Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling

[1] Shengqiong Wu, Hao Fei, Yixin Cao, Lidong Bing, Tat-Seng Chua. Information Screening whilst Exploiting! Multimodal Relation
Extraction with Feature Denoising and Multimodal Topic Modeling. ACL. 2023.
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SG-based Multimodal Relation Extraction g%t

B Motivation
» Relation Extraction (RE)

member of

Textual RE

Under Cook’s leadership, Apple has increased its donations to charity.

* Input Text:

JFK and Obama at Harvard (@Harvard « Output Relations:

(Graduated at, JFK, Harvard)
(Graduated at, Obama, Harvard)
(Alumni, JFK, Obama)

Multimodal RE |« Input Image:

Supporting Visual Evidence: Bachelor Cap, Gown, Book

24




SG-based Multimodal Relation Extraction [Rg*t

B Motivation
> Problem 1: Internal-information over-utilization

* ONLY parts of the texts are useful to the relation inference

*  33.8% of tweets had textual content that was not reflected in the images, and the images did
not add additional content

v" A fine-grained information pruning over two modalities is needed

Last exam turned in. No more
Jjuggling work + school + family
+ hobbies. Maybe now they’ll fi- >Example #I COHPIB
nally give me a BSc

—— D
ITSIDONE =

Input Text: Congratuladons ro Angela and Mark Salmons, a new life ahead is waiang!

Useful feature for

Input Image: relation reasoning

25




SG-based Multimodal Relation Extraction

B Motivation

» Problem 2: External-information under-exploitation
Information

* Short in text lengths and low-relevant images deficiency

v' Additional semantic supplementary information is needed.

» Example #2 present in

Input Text: Yessir dropping my first single "Hot summer"” with my brothers Migos.
Topic: #Music

rour, video, billboard,
concert, album, live -

Input Image:

26




SG-based Multimodal Relation Extraction [Rg*t

B Motivation

v" A fine-grained information pruning over two muti-modalities is needed ]

A\

GIB-guided Feature Refinement

v’ Additional semantic supplementary information is needed. ]

N

Multimodal Topic Integration

21




SG-based Multimodal Relation Extraction

Neg*T

B Method

Latent Multimodal Topic Modeling

1

| |

| | , . . . ]

<N Us . CMG (G) | | Node Filtering Edge Adjusting REf"EE,d_ﬁmph Top-L Textual Topic Top-L Visual Topic

e Y ; —

| K k} ¢ y a z u' ! S e

I I f o P — I : @

~! &_ 2 x XX » v » ¥ " I =
| % % (L » engaged =+ [, v : =

BN, - - >~ 80 , g Qi B e — S

)& 4 lees: m Eleeo o2

~—,  VSG@GH % - S - gl S N ‘@ D,

i —u: - | "~ h.g X x - . e I\ _— . e ,: tl

EiNvA L1 X [ e —

ting 7 = X x Y !

| €| { ] _ —_

I JI oy I' I v T I

- GAT Encoder| || Pi OV; | (pi;-pl - pj) Oe, 0 0

| | | |

Scene Graph | Cross-modal Graph GIB-guided Feature Multimodal Topic Inference
Generation Construction Refinement Integration
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SG-based Multimodal Relation Extraction [Rg*t

B Method

» Scene Graph Generation
* Represent input text 77 with Textual Scene Graph (TSG)

Textual Scene Graph

r

______ Halley

|[Halle‘z] and(Justin) |par'smg Z Fan —
input text 7’ wnh Mm@l e

\_ _____ ]ustm

* Represent input image 7 with Visual Scene Graph (VSGQG)

Visual Scene Graph
s \

man Y behind —  bike

beside wear —> T-shitt — white

input image 1 parsing v wear —> shorts — blue
— < in — hat — blue

besfide wear —> T-shitt — white

_ woman in  — shorts — Dblue

Object node Relation node Attribute node 29




SG-based Multimodal Relation Extraction

Neg*T

B Method
» Cross-modal Graph Construction

* Merge the VSG and TSG into one unified backbone
cross-modal graph (CMG)
G=WTuVvLETUETUE®) X=XTuU X!

” ~

inter-modal

hyper-edges

intra-modal
hyper-edges

* Creating inter-modal hyper-edges by measuring the

relevance score

o I T
Syl ,T = cos(xi,x; )
J

v,

e Graph Encoding

H=1{hi, - hmin} = GAT(G, X)

-~ TSG(G")

Us

X9

(
|
|
|
|
I
|
|
|
|

\-__'J

%Np%

I ~
CMG (G) | Nc

R
//\“}_}

™~

GAT Encoder i

Scene Graph Cross-modal Graph

Generation

Construction
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SG-based Multimodal Relation Extraction g%t

B Method
» GIB-guided Feature Refinement

* Screen the initial CMG structure i.e., fine-grainedly prune
the input image and text features

Node Filtering Edge Adjusting Reffned_Grap h
* Node Filtering GH
X x a z
Filter out those task-irrelevant nodes X XX
. 5 ®° — - -~

* Edge Adjusting e . 2 .

Adjust the edges based on their relatedness to the X "/ *

task inference. x o
« GIB-guided optimization pi’ Ovi | (pi;-pi - pj) Oey,

1o ensure that the above adjusted graph G~ is
sufficiently informative (i.e., not wrongly pruned)

Lo =min|[—I1(z,Y)+B-1(z,G)]

GIB-guided Feature Refinement
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SG-based Multimodal Relation Extraction g%t

B Method
» Multimodal Topic Integration

* Enrich the compressed CMG features with more semantic contexts, i.e., the multimodal topic features.

* Retrieve the associated top-L textual and > Latent Multimodal Topic Modeling
visual topic keywords
Top-L Textual Topic Top-L Visual Topic
* Devise an attention operation to integrate a =z u . w’ 8
the embeddings of the multimodal topic > é th; 4k é %
words ~om-3 - ¢ g P
® S o girl S ! "
T/ _ e}f;p(FFI\I([MT;‘I1 2])) | e L e o e )
' Z?; exp(FFN([u; T/ 1 z])) Y ‘[
OT/I = ia?”u?ﬂ. . a o'

7
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SG-based Multimodal Relation Extraction

B Experiment

» Main Results Acc. _Pre.Rec. FI
o Text-based Methods

BERT' - 6385 5579 59.55

PCNN' 72.67 62.85 49.69 55.49

MTB' 7273 64.46 5781 60.86

* Qur model achieves the best performance. DP-GCN’ 74.60 64.04 58.44 61.11
e Multimodal Methods

BERT(Text+Image)” 7459 63.07 5953 61.25

* [nformation screening and exploiting both BERT+SG' 74.09 6295 62.65 62.80

contribute to the task performance — 1o ool DA o

P : VisualBERT],, . 57.15 5948 58.30

VILBERT] - 6450 61.86 63.16

: : : : i

» Scene graph is beneficial for structural modeling EﬂiNeTi gggj gg"?‘; g?';‘;

of the multimodal inputs. MKGformer' 9231 82.67 8125 81.95

‘Ours " 94.06 84.69 83.38 84.03

| w/o GENE (Eq. 11) 9242 8241 81.83 82.12 |
w/o I(2,G) (Eq. 13) 93.64 83.61 82.34 82.97

| w/o LAMO (Eq. 4) 92.86 82.97 81.22 82.09 |
w/o o 03.05 83.95 82.53 83.23
w/o o’ 93.63 84.03 83.18 83.60
w/o VSG&TSG 93.12 83.51 82.67 83.09
w/o CMG 93.97 84.38 83.20 83.78
33



SG-based Multimodal Relation Extraction g%t

B Experiment

» Analysis and Discussion

Q: Under what circumstances do the internal-information screening and external-information
exploiting help?

Bﬂ MKGformer BB Ours EE Ours w/o GENE || Ours w/o LAMO

90[
- %  For the inputs with higher text-vision relevance,

% 89 Zn 3 - B the GENE plays a greater role than LAMO, while
I 2 ' = under the case with less cross-modal feature

801 | relevance, LAMO contributes more significantly

75H = ~ than GENE.

Low Relevance Weak Relevance Strong Relevance
(T <30) (30< ¥ <70) (7T0< )

GENE - GIB-guided Feature Refinement
LAMO — Latent Multimodal Topic Model

34




SG-based Multimodal Relation Extraction g%t

B Experiment

» Analysis and Discussion

Q: Does GENE really helps by denoising the input features?

ini S o 9o © o o©
Training Steps o o o 8 8 8 2 28 8
S & & @a@ w»w w = %+ Kk
o ®m ©® & H = 2+ &N ™ ™
o) 10 J— | ! | ! | | | 160 &0
= I \ e S
= 8l f 120 2 —
g . T 2 « Cl ' tt
. .— * ]
e ! (- “E = car pruning pattern.
ay = + 2 e
= - - (1]
= - " R —_ . .
2T N B B —~ Lo &  Effective performance increase.
40 (—4b 2.6
P 45
46,5
548
—_ 4.8 s [gos poi’
I (510] -
5 20 |—
\:’ 57 642 ]
£ 986 959
103.8
15.4 6.8
#20 — 126.4 03 412 —
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Topic

Textual keywords

Visual keywords (ID)

#Politic
#Music
#Love
#Leisure
#ldol
#Scene
#Sports
#Social
#Show
#Life

trump, president, world, new, china, leader, summit, meet, korean, sencte

tour, concert, video, live, billboard, album, styles, singer, taylor, dj

wife, wedding, engaged, ring, son, baby. girl, love, rose, annie

photo, best, beach, lake, island, bridge, view, florida, photograph, great

metgala, hailey, justin, taylor, rihanna, hit, show, annual, pope, shawn

contain, near, comes, american, in, spotted, travel, to, from, residents

team, man, world, cup, nike, nba, football, join, play, chelsea

google, retweet, twitter, youtube, netflix, acebook, flight, butler, series, art

show, presents, dress, interview, shot, speech, performing, attend, portray, appear
eood, life, please, family, dog, female, people, boy, soon, daily

#1388, #1068
#1446, #1891
#434, #1091
#0679, #895
#1021, #352
#5335, #167
#1700, #109
#1043, #1178
#477, #930
#0613, #83

) l_
Topic |

Table 3: Top 10 key textual topic keywords and top 2 visual topic keywords discovered by LAMO.
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SG-based Multimodal Machine Translation Rg*t

Application III:

Scene Graph as Pivoting: Inference-time Image-free Unsupervised
Multimodal Machine Translation with Visual Scene Hallucination

[1] Hao Fei, Qian Liu, Meishan Zhang, Min Zhang, Tat-Seng Chua. Scene Graph as Pivoting: Inference-time Image-free
Unsupervised Multimodal Machine Translation with Visual Scene Hallucination. ACL. 2023.
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SG-based Multimodal Machine Translation Rg*t

B Motivation

» Neural Machine Translation (NMT) » Multimodal Machine Translation (MMT)

Source NMT Target /
Language Model Language ‘-;_m_——_— 2

A bird flies
over the water

Ein Vogel fliegt
uber das Wasser

* Training <strc-tgt> * Training: <src-img-tgt>

I

38

Collecting large-scale parallel sentences are cost & sometime infeasible !




SG-based Multimodal Machine Translation g%t

B Motivation

» Unsupervised Multimodal Machine Translation (UMMT)

Ein Vogel fliegt
= . iiber das Wasser
A bird flies
over the water

* Training & Testing: <sertnpe™ >
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SG-based Multimodal Machine Translation g%t

B Motivation

» Unsupervised Multimodal Machine Translation (UMMT)

Practical UMMT requires the avoidance of not Avoid parallel sent. Avoid paired img.
. .. during training?  during testing?
only parallel sentences during training, but also o Supervised MMT
: : : : : General MMT X X
the paired image during inference (testing). G0
Fang and Feng (2022) X v

Lietal. (2022)

.. e Unsupervised MMT
O some existing MMT rescarches exempt Chen et al. (2018)

. . . . Su et al. (2019) v X
the testing-time visual inputs; Huang et al. (2020)
Thiswork v

] Table 1: Practical unsupervised MMT requires the avoid-
O they all unfortunately are supervised methods, ance of not only parallel sentences during training, but

relying on large-scale parallel sentences for training: also the paired image during inference (testing).

v' It's necessary to explore the Inference-time Image-free UMMT!
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SG-based Multimodal Machine Translation Rg*t

B Motivation

» Unsupervised Multimodal Machine Translation (UMMT)

» Visual information is vital to UMMT, however both the existing supetrvised and unsupervised
MMT suffer from ineffective and insufficient modeling of visual pivot features.

» Coarse-grained vision-language alignment learning.

> Phrase-level vision-language alignhment learning (grounding).

v’ 8l fail to have a holistic understanding of the visual scene!
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SG-based Multimodal Machine Translation Rg*t

B Method

» Scene Graph-based UMMT System

* The input src text and paired image are
first transformed into [.SG and VSG.

e [.SG and VSG are further fused into a mixed

SG, and then translated into the tgt-side LSG.

* And the tgt sentence will be finally
produced conditioned on the tgt LSG.

SG Fusing&Mapping SG Fusing&Mapping |
T T
O |, Visual Scene O | Visual Scene
Hallucinating ™ allucinatin ’
LSG” VSG | | LSG” VSG
?
X Z X
(a) Training phase (b) Testing phase

Figure 2: The high-level overview of our SG-based
UMMT model. During training, src-side sentences with
paired images are used as inputs, together with the cor-
responding LSG and VSG. Testing phase only takes
src-side sentences, where the visual hallucination mod-
ule is activated to generate VSG from text sources.
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SG-based Multimodal Machine Translation g%t

B Method

» Visual Scene Hallucination

* To support pure-text (image-free) input
during inference, we devise a novel visual

scene hallucination (VSH) module.

* VSH dynamically generates a hallucinated
VSG from the LSG compensatively.

* Stepl: sketching skeleton

* StepZ: completing vision

LSG

Skeleton VSG

S~—

Step1: Sketching skeleton

Node ) Relation)
augmentor

augmentor

\

Hallucinated VSG

SR

Step2: Completing vision

Object node

Figure 3: The illustration of the visual scene hallucina-
tion (VSH) module, including two steps of inference.
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SG-based Multimodal Machine Translation Rg*t

B Method

» Scene Graph Pivoting Learning for UMMT

attracting
'CVCB X Y
repelling - *._ "
VSG 0 A 1 T
-8 SG Fus 0O
— X% oo (Fbuhg) oo S|
x Lon z LSG” A om -
(a) Cross-modal scene : LSG
graph aligning : L P
SG Mapping
T
V?G L
/i 2 . y ViG
X L rec & +Z i

(b) Cross-reconstructing  (c) Visual-concomitant back-translation  (d) Captioning-pivoted back-translation

Figure 4: Illustrations of the learning strategies for unsupervised multimodal machine translation.
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SG-based Multimodal Machine Translation Rg*t

B Experiment
» Main Results

En — Fr En + Fr En — De En < De

BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR
o Testing with image input given

Game-MMT - - - - 16.6 - 19.6 -
UMMT 39.8 35.5 40.5 37.2 235 26.1 26.4 29.7
PVP 52.3 67.6 46.0 39.8 33.9 54.1 36.1 34.7
Ours™ 56.9 70.7 50.4 42.5 374 57.2 39.2 38.3
w/o SGs 51.7 64.0 46.2 40.7 345 56.4 36.9 35.2
o Testing without image input given
UMMT 15.8 12.7 10.2 13.6 8.4 11.3 7.5 10.8
UMMT™ 30.4 28.4 31.8 30.4 15.7 17.7 19.3 227
PVP 26.1 23.8 25.7 234 11.1 13.8 14.0 17.2
PVP” 46.7 58.0 39.0 319 254 40.1 27.6 26.0
Ours 50.6 64.7 45.5 37.3 32.0 52.3 33.6 32.8
(+3.9) (+6.7) (+6.5) +5.4) (+6.6) (+12.2) (+6.0) (+6.8)

Table 2: Results of UMMT on Multi30K data. ‘Ours*’: using paired images for testing instead of visual
hallucination. ‘UMMT*/PVP*’: re-implemented baselines with phrase-level retrieval-based visual hallucination. In
the brackets are the improvements of our model over the best-performing baseline(s).

Our system shows significant improvements over the best baseline PVPx, by average
5.75=(3.9+6.5+6.6+6.0)/4 BLEU score.
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B Experiment

> The longer and more complex the sentences, the higher the translation quality
benefiting from the SGs features.

oo UMMT - -=- PVP* —e— Ours
A(Ours-UMMT™) A(Ours-PVP™)
60 . [ [ 20

Score

U

10

BLEU Score

A BLI

(7,14)  [1421) [21,28) [28,35) [3542)  >42
Sentence Lengths

Figure 6: BLEU scores under different sentence lengths.
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SG-based Multimodal Machine Translation Rg*t

B Experiment

» SG-based visual scene hallucination mechanism helps gain rich and correct visual features.

|11 with skeleton VSG /[l with hallucinated VSG
'l Object node Attribute node U0 Relation node § 20 N —
IX 80| - 80| ] A
o~ 30 30 . < Vo Vo
X% N S 7
— | 1 = [ 1
2 0 1 ol | | =0 — |||
D | | { 1 | |
55 ooy 7 A
=5 101 | 10 - = 60 60
= NN En — De En — Fr
0 0
En — De En — Fr Figure 8: Degree of visual relevance (similarity) be-

tween the hallucinated vision (via graph-to-image gen-

Figure 7: Growing rate of nodes in hallucinated VSG. .
erator) and the ground truth image.
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Gold Paired
Image (not used)

SRC Text

PVP* (PR)

Query Pkms‘e?&
Visual Reglom

Translated Text |

Scene Graphs

Translated Tex

| zwei fahrrider stehen hinter zwei mann mit den
I eingetopften graspflanzen in der nihe des meeres.

two bicycles Stﬂ[]d bthl[ld two ptf)ph:
_ sitting on the grass near a body of water.

<Query> bicycle <Query> pecopl
- : S

(rwo bicvcles stand behind two man with the
herbaceous plants near the ocean.)

L

bicycles =+ stand pctip]t

LSG Hallucinated VSG
two grass < stand WO grass <= stand
l two - o -~

t_

water <-near inear- > water <=near

/

zwei fahrrader stehen hinter zwei Personen, die
.t' auf dem gras in der nihe eines gewissers sitzen.

(rwo bicycles stand behind two people sitting
on the grass near a body of water.)

(a) Case #1

bi C}:Clcs < stand + people

T 1

I l

I l

| l

I I

| I

I I

1 <Query> shorts | <Query> worksuit <Query> helmet <Query> tree

I \ ' ( 75

| | !ﬂ / r

I l | Y

I [

: | i beiter 1 bei it handschuh d

I . . | eln arbelter 1m ar cltsanzug mit hanaschunern un

: mann in hemd und hose, der fullball spielt. : helm sieht einen baum.

: (man in shirt and pants playing football) : (a worker in a work suir with gloves and helmer sees a tree))

e e e e e e e r e e e e e e, e ——m———-- e e, e, e, e, e, e, e, e, —————-—-—-

I { ™ . | 7 3 P

| LSG Hallucinated VSG | LSG Hallucinated VSG

: ; . : . : . ) Iér::t_:n worksuit with + gloves

| t-shirt in =* t-shirt , | e n =+ worksuit ¥ 4

4 + lov | forest |  in .
|| man > kick> foogbal man > kick> football || 1 1 doe Uy /Ly Wit helmer
___" 2 = - with & . _

: in = shorts nff lon | in = shorts Diff : R mmd Lpp"t"mfn -
'y oo \ T

I ( R | ¥ wear | saw | saw

I ree gr_::.:p)'*l_ﬁgl_d_. LT e | with=> helmet P S -

| I '\gﬂggltS' tree | cut)

I\ / [N J

I I . . . .

- . - cin arbeiter im anzug mit handschuhen und rotem

I -8 [ . .

| mannint shirt und shorts tritt fuball vom tee. ! Telm sigt einen baum.

I . ! . .

I (man in -shirt and shorts kicks toorball off the tee.) | (a worker in worksuit with gloves and a red helmet saw a tree)

T i — i i —

(b) Case #2 (c) Case #3

Figure 5: Qualitative results of inference-time image-free UMMT (En— De).
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SG-based Multimodal Machine Translation g%t

B Experiment

» To what extent does SG parsing quality influence the efficacy of end task?

Surely low-quality SG annotations decrease the
efficacy of the SG features for end tasks.

Existing SOTA SG parsers are effective enough to aid
the end-tasks, 1.e., the positive outweighs negative.

Mostly, end-tasks are more sensitive to the quality of
the textual SG, compared with the visual SG.

35

25 -

15 Ll

5

15
R@50

25

En—De (BLEU)

15|

6

12
R@5

18

35 |-

25

15

15 25 35

R@100

(a) Visual scene graph parsing performance

35

25

15 |-

30 40
R@10

(b) Language scene graph parsing performance
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Video Scene Graph-based Applications

Outlook of Future Directions




SG-based Video-Language Modeling NeXT

Application IV:

Enhancing Video-Language Representations
with Structural Spatio-Temporal Alignment

[1] Hao Fei, Shengqiong Wu, Meishan Zhang, Shuicheng YAN, Min Zhang, Tat-Seng Chua. Enhancing Video-Language
Representations with Structural Spatio-Temporal Alignment. 2023.
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B Motivation
» Video-language model (VILM) pre-training

Viden{'llip EE NS S S SN S S S NS S EEEENEEEEEEEEEEEESN

v' Existing issues: . e # P —!; ‘

* Coarse-grained cross-model alioning

{‘Captioning
. . ! place the bacon slices
* Under-modeling of temporal dynamics : b baking pan and

'. cook them in an oven

* Detached video-language view

52
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B Video Scene Graph Representation

“Sitting on a sofa”

person

in front of
next to Qmeath
sofa == — sofa

Spatlo temporal scene graphs

—— person

sitting o
be

A sequence of VSG along time frames.

rD

sofa

» Video Scene Graph, aka., Dynamic Scene Graph (DSG), Spatio-temporal Scene Graph

sitting in a chair ‘

1
1
[
[
[
!

|
I
|
|
{
cup )
in front of drinking from
k holding
person
Ny
sitting on
in front of beneath
A Y
table chair

[ —— p—

Iobking outside of a Window
._I' & < o al

1 I 1 I
N T R R B 1
i 1 U

cup)
etz ; looking at

k holding
person
Y
sitting on

in front of beneath
A ~
table chair

window

=
in front of

\ looking at
person
Y

sitting on

in front of beneath

- ~

table chair

[1] Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos Niebles. Action genome: Actions as compositions of spatio-temporal scene graphs. CVPR, 2020.
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B Motivation

» video-language model (VLLM) pre-training

Coarse-grain ed cross-model zz]lgmhg

» Fine-grained alighment

Under-modeling of temporal dynamics

» Modeling dynamics with DSG

Detached Vfd@()—]gngugzge view

» Merging TSG and DSG

I A young man with his knitted\l

:scm‘f and skateboard quickly|

| 8it down on bench in autumn |
'park drnks coffee hastily out:
l\of paper cup. |

——— — — — — — e —— — — —

autumn — park
+

knitted — scarf in
¢

T
youn with bench
: g\. t ot
with «— man — sit down on

¥ S
skateboard drink

paper — cup <+ out of «— coffee

Scene Graph for Text

scr“*‘— black . scarf black
skateboard ? skateboard 1 skateboard
'th with L3 with L3
LAl \ *w1th L% ,w1th
man = =— — = man — —— — — man
L ~ / N
L / hold _/ (bold
m front of \ SLR0 : | :
bench bench <— wooden  bench <— wooden

Scene Graph for Video

o4

Scarfr' .
T skateboard

wit | 3
\ Bemde
man
I
siton . drink
n l
AN
. coffee

bench <— wooden




SG-based Video-Language Modeling NeXT

B Method

> Fine-grained Structural Spatio-temporal Alighment (Finsta) framework

Static Node

knitted — scarf skateboard

! [
:
| scarf-----------o - > scarf i Dynamic Node
| Ith Tth skateboard -------- 1‘—» skateboard ------- 1 1: skateboard !

oun w1 Wi T i k., it X .
E y b 7 'mth\ Wlﬂl\ /\'mth S " l))'eside i (D Attribute Node
: hastily =~ man — drink man- - Fman - » man ' <> Relation Node
e quickl/)/f, l | / peia | sitoh . rink [ ] Object Node
'\ sit down on — sitlss ‘1 J in \ l | ]
! . coffee !
! in » park l \ - ---——-- cup coffee !
, 4 out o‘f/ : Cross-modal
! autumn T cup bench ~--------- » bench - » bench | Coreference

A L3 L} ]

E bench e —r s X I — : (first occurrence)
! N o Temporal
: Texutal Scene Graph Dynamic Scene Graph : OO Coreference

__________________________________________________________________________________

Figure 2: We represent the input text and video with textual scene graph (TSG) and dynamic scene
graph (DSQ), respectively, where all nodes are categorized into the static type and dynamic type. We
further unify the TSG and DSG into a holistic SG (HSG).

55




SG-based Video-Language Modeling

B Method

tHC
[ HSG Encoder (R6Trm) ] £
» Fnsta r F
1 ! 3 .
o ol 1
. . 1 1 1 i t t+1 t+m
I - W I 5 J
* SG Representation Construction ] y ) \ W ——
|
TSG l__ HsG ) (b) Predicate-centered Temporal Contrasting
. T ~ M Bse
. L HT tH”
} * Holistic SG (HSG) T56 Encoder DS6 Encoder (R6Trm) S >

T - i

y DSG i ™ osc |y N N2 ;3;\ *le?
b R P ==t P i el

. . [ v 7 <L rro> QRS S Sans= > (B R - N
* VL Representation Learning N —RN N SN .

4 —_—t B M === E"ceu’g‘;r

* Fine-grained Structural Spatio- ' IR 3 : | 1

L 4 ) ‘
Temporal Alignment Learning ' t oo : B o
TS6 I .
3 '\ o '_ DS6_A_____ ___J
*  Object-centered Spatial Contrasting (OSC) Text ==m Importing Distilling

(a) The ngh-level View of Our Framework (c) Registering Our Finsta into a VLM

Figure 3: (a) Fine-grained structural spatio-temporal alignment learning (Finsta) based on the dual-
stream framework with three SG encoders. (b) Extracting the spatial region and temporal interval for
the predicate-centered temporal alignment. (c) Injecting our Finsta representations into a host LVM.

*  Predicate-centered Temporal Contrasting (PTC)

* Representation Transfer Learning
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B Experiment

Table 1: Video Action Recognition re- Table 2: Video captioning results on three datasets.

sults (ACC. on TOp-l) on two datasets. YouCook2 [80] MSRVTT [72] MSVD [7]

The best results are in bold. Method Table 5: Long-Form Video Question-Answering re-
Method K400 [35] SSV2[23] M B@4 M B@4 M B@4 sults (Acc.) on two datasets.
Frozen [3] 78.5 61.6 UniVL [46] 7.6 112 - - - - ResNet-SF [42] 74.3 -
OmniVL [68] 79.1 62.5 SAM-SS [9] - - 29.3 458 390 624 GVE[10] - 68.4
HDVILA 78.6 61.3 SemSynAn [55] - - 304 464 419 644 HERO [41] 74.3 68.6
Finsta-HDVILA 804 63.2 OmniVL [68] 14.8 8.7 - - - - LFVILA 76.1 70.9

“Clover 788 ~ ~ 623 ~  HDVILA 135 82 324 460 425 648 Finsta-LFVILA (S-Vid) 77.5 71.7
Finsta-Clover 81.2 64.1 _Finsta-HDVILA = 188 127 369 486 448 665  Fingta-LFVILA (L-Vid) 78.8 73.0

Clover 14.2 9.0 34.1 47.5 433 646
Finsta-Clover 18.6 12.5 38.8 49.3 45.2 674
Tab}e 31; Video ?ueztif[)n Answering Table 4: Video-Text Retrieval results on two datasets.
T:;th:;ifi = OHNE%V?T;S‘E;T)-] MSVD [70] Method LSMIDC [45] DiDeMo [26] Table 6: Video-Paragraph Retrieval results on
R@1 R@5 R@10 R@1 R@5 R@10 QuerYD data [51].

ClipBERT [38] 374 - Method R@1 R@5 R@10
ALPRO [39] 421 459 ALPRO [39] - - - 359 67.5 78.8 TeachText [14] 14.4 37.7 50.9
OmniVL [68] 441 510 CLIPACLIP[47] 216 418 498 434 702 806 Frozen [3] 538 757 827
ADVILA 00 50,7 CAMOE[12] 225 426 509 438 714 - LFVILA 697 857 903
Finsta-HDVILA 43.4 533 HDVILA 21.8 42.3 497 457 724 79.2 Finsta-LFVILA (S-Vid) 70.0 86.4 91.2

“Gover —~ ~ ~ ~ ~ 55~~~ 751y~ FinstaHDVILA 253 463 558 493 759 836 Finsta-LFVILA (L-Vid) 73.4  87.8  93.0
Finsta.Clover 458 546 Clover 248 440 545 501 767 856

Finsta-Clover 269 468 563 51.0 778 864

S5/
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B Experiment

» Influence of Post-training Data Amount

—— Finsta — HDVILA —— Finsta-HDVILA —— Clover —— Finsta-Clover

651 ! ! ' 1 |

é 55| e————
o'

50+

45+

| | | | /‘Tﬂll | | | |
10 20 30 40 50 || 300 400 500 600 700 (k)
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B Experiment

» Probing Fine-grained Video-Language Cotrespondences

* Static Entity-Object Correspondence. * Dynamic Predicate-Action Tracking Correspondence.
Finsta-HDVILA W/O LOSC’ W/O LPTC’
90 - .
90 | - 951 I - 80 -- 1§ 7
— 70 o 80 -
g *° & 9 s = o
Aorob ~ o= ) | |
s0f : 60f .
60 = = ol = - 75 B B

(a) Static entity-object correspondence (b) Dynamic predicate-action tracking correspondence
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SG-based Video Semantic Role Labeling Ne*T

Application V:

Constructing Holistic Spatio-Temporal Scene Graph
for Video Semantic Role Labeling

[1] Yu Zhao, Hao Fei, Yixin Cao, Bobo Li, Meishan Zhang, Jianguo Wei, Min Zhang, Tat-Seng Chua. Constructing Holistic Spatio-
Temporal Scene Graph for Video Semantic Role Labeling. ACM MM. 2023.
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SG-based Video Semantic Role Labeling Ne*T

B Motivation

» Video Semantic Role Labeling (VidSRL)  “who does what to whom, where and when and how” within a video

e Subtask-1:

Predicate ride :
i Argl<agent>: man in hat ;

verb prediction . §
B Arg2<patient>:  ox

Os ! 2s

= i : S Event2 T
 Predicate ride :
 ArgI<agent>: man in hat |
EArg2<patient>: ox

. ArgM<manner>: slowly

e  Subtask-2:

arguments generation (or role labeling)

éPredicaa‘e look .
‘Argl<agent>: the couple !
‘Arg2<patient>:  man in hat |

e Subtask-3:

event relation prediction
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SG-based Video Semantic Role Labeling

B Motivation

» Two key bottlenecks in VidSRL

Lack of fine-grained spatial scene perception

Insufficient modeling of video temporality

Predicate
iArgl<agent>:
:Arg2<patient>:

62

:Event 1

. iPredicm‘e

- EArg1<agent>:

[ Arg2<patient>:

i ArgM<manner>:

iEvent 2
Predicate
Argl<agent>:
Arg2<patient>:
EArgM<manner>:

ride :
man in hat
ox :

ride

look .
the couple |
man in hat |

.................




Holistic Spatlo-TEﬂoral Scene Graph

SG-based Video Semantic RO |y s s —_S“ms

Construction : J

. DSG o '
MethOd Merging . '\?-x -1§G - ,,\T.\ - “\T“\ Step 2

» Constructing a holistic spatio-temporal scene graph (HostSG) s

Parsing

° Step_l : K;y Frames T Step 1
xtracting
Video dynamic SG (DSG) Generation for Clip. ‘ ‘
Video Clip 1 Clip 2 Clip N
Segment ¢

+ Step-2: LTI LTI T

(a) Overall process of HostSG Construction

M efgjhg DSG. (ODynamic Node [] Static Node --- Motion Edge — Co-ref Edge
N DSG . ISG
ERVANTIR
I h ~ Ny ~
. I PNy ! /N
° Step—3 : ] : : : L -
| N [ I | — | /
. N | ‘L ™ : N
HostSG Construction. B\ IR VY g
N ~ | A e |
N AN
(b) DSG merging (c) Adding cross-clip edges

Figure 2: Holistic spatio-temporal scene graph generation.
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SG-based Video Semantic Role Labeling

B Method

» VidSRL Framework

Hierarchical Scene- . Predicate Node O Argument Node ﬂ Event Evolution Edge

+=-=2= Motion Edge

Event Graph

= Mapping Edge L‘( _\-.V Co-reference Edge

N

~

Event Level Temporal Propagation

GGNN
A
§0 - h’
a A
=N 1] / ’ ' v
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Figure 3: Augmented holistic event-arguments semantic graph.




SG-based Video Semantic Role Labeling Ne*T

B Experiment

> Main Results

Table 1: Main results on the VidSRL dataset. “Verb Cls”, “SRL” and “EvtRel” represents the three subtasks verb classification,
semantic role labeling and event relation prediction. The CIDEr score is also computed over every verb-sense (CIDEr-Verb) and
over argument-types (CIDEr-Arg). Bold numbers are the best, and underlined ones are the second best. Our results are averaged
on five running with different seeds. Gray color: methods use ground-truth verb annotations for SRL training.

Verb Cls SRL EvRel

Acc@1(%)  Acc@5(%) Rec@5(%) CIDEr Rouge-L CIDEr-Vb CIDEr-Arg Lea Lea-S Macro-Acc(%)

e Pipeline
VidSitu-GPT2 [32] - ; - 34.67 40.08 42.97 34.45 4808 28.10 -
VidSitu-13D [32] 30.17 66.83 4.88 47.06 42.41 51.67 4276 4892 3358 -
VidSitu-SlowFast [32] 32.64 69.20 6.11 4552 42.66 55.47 42.82 5048 31.99 34.13
e Joint
VidSitu-e2e [47] 46.79 75.90 23.38 30.33 29.98 39.56 23.97 35.92 - -
OME [47] 52.75 83.88 28.44 47.82 40.91 54.51 44.32 ; - -
OME(disp) [47] 53.32 84.00 28.61 48.46 41.89 56.04 44.60 ; - -
OME(disp)+OIE [47] 5336 83.94 28.72 47.16 40.86 53.96 4278 . - -
VideoWhisperer [24] 45.06 75.59 25.25 52.30 35.84 61.77 38.18 38.00 -
HostSG (Ours) 8% 8633 o 20 B34 X0 78 2 B KR




SG-based Video Semantic Role Labeling Ne*T

B Experiment

» Q: Does HostSG provide informative spatial and temporal features for VidSRI?

Table 3: Influence of different numbers of frame extraction.

‘w/o Key Frame Extraction’ means we extract frames with a 9 Verb Acc H B CIDEr |
constant interval.
557 | 56.15 1°7¢
Acc@1 CIDEr Macro-Acc % 25.09 544 <
e 1 Frame/Clip 41.48  36.85 33.91 > ' >
w/o Key Frame Extraction 41.51  37.10 34.02 53 5@@@%@“@1@; sa
e 5 Frames/Clip 56.15 55.09 35.97 Scene Graph Objects
w/o Key Frame Extraction 56.13  54.77 35.16
e 11 Frames/Clip 55.15  54.72 35.31 Figure 4: Comparison between the results of scene graph
w/o Key Frame Extraction 55.04  54.67 35.29 features and object features.

66



B Experiment

» Visualization of the cross-clip
coreference edges

Event? Woman

Event3

Figure 6: Visualization of the cross-clip coreference edges.
We select three clips from a video, representing the edge
weights by the line width. The highlighted red lines denote

the coreference relation of the objects with the tag “Man”.

6/




SG-based Video Semantic Role Labeling

B Experiment

» Quantitative results

ICE
Graph ) KN ® ¢

Event 1: look Even 2: speak Event 3: move
<Arg0> man without <Arg0> man with tie <Arg0> man with tie
<Argl> man with tie <Argl> man without tie <ArgM> in anger
<ArgM> across the room <ArgM> angrily <ArgM> backwards

» Only HostSG

Event 1: look Event 2: speak Event 3: look
<Arg0> man in black shirt <Arg0> man with tie <Arg0> man in suit
<Argl1> man in brown shirt <Argl> man in black shirt <Argl1> man in black shirt

<ArgM> across the room
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3D Scene Graph-based Applications

Outlook of Future Directions




3D Scene Graph-based Applications

Application VI:

Generating Visual Spatial Description via Holistic 3D Scene Understanding

[1] Yu Zhao, Hao Fei, Wei Ji, Jianguo Wei, Meishan Zhang, Min Zhang, Tat-Seng Chua. Generating Visual Spatial Description via
Holistic 3D Scene Understanding. ACL. 2023.
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3D-SG-based Visual Spatial Description Ne*T

B Motivation

» Visual Spatial Description (VSD)

Inputs: img, two objects Output: spatial description

> The man in white is standing behind the yellow fire hydrant

<'man’, [2]>
<‘fire hydrant’, [3]> /

/1



3D-SG-based Visual Spatial Description

B Motivation

o ) . » 2D Space Modeling
» Existing issues b L The gray -+ is patked on
; the left of the blue car. %
* 2D modeling is NOT enough » 3D Space Modeling
4 The gray car Is patked in v
, _ Ao front of the blue car.
O Perspective llusion T I E
O Overia . . : :
P (a) Modeling 3D scene features results in correct spatial understanding

The gray c:r is patked in front

~

- of the blue car.
.\ The gray 1 Is parked in front of
* Relation descriptions NOT diversitied enough ) the blue car next to the building
Val The gray c:r near the house is
O Shasial Di ' \ parked in front of the blue car.
atia 1versi
P versity a The gray «-r near the house Is patked
L in front of the blue car on the road.

(b) Holistic 3D scene features help generate diversified spatial descriptions

(2




3D-SG-based Visual Spatial Description Ne*T

B Method

» Modeling 3D Scene Graph

* 3D Scene Feature Extracting

* Parsing with an off-the-shelf model

‘ =(EV) |
plcture
... plant i S
*  Graph Modeling ks ék’ , \. :
*  Target Object-Centered 3D Spatial Scene Graph (GO3D-S2G) 3D obi Target object-centered
jects 3Ds f
patial scene graph

*  Object-Centered GCN (OCGCN)

[1] Yinyu Nie, etc. Total3dunderstanding: Joint layout, object pose andmesh reconstruction for indoor scenes from a single-image. CVPR. 2020.
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3D-SG-based Visual Spatial Description

Neg*T

B Method

> Framework

Encoder: 3D Scene Feature Modeling
A

Decoder: Spatially-diversified Text Generation
A

[s Y N
8¢, e 3 M The sofa near the table is on tfe left of the bed.
: ° i °
) X ] VL-PTM decoder
» Init node embedding L 1
57 + FFN( s/ & Embed (o7, D size,) ) o Interacting with cross-attention
a T I
. . < T (£ T
»Init edge embedding ® ¢
s{; + FFN (loc, @ loc,) O O MeanPool ({ A8/, )‘zéfle }) _,’ : : :
L Object-centered GCN encoder ) i 4
) ‘!‘ . . VL-PTM encoder
ori loc size vis pi ¢= (E’ V) Scene e f
i i : ¢ e T : subgraph
S()fﬂ pl \ se leg.ctigg . 4
@g % IEI lgl & / > Constructing| table sofa = & I
prompts s
: T t object-cent " .o
3D scene features 3D objects 3D gg at(;leﬂ pos erclgngggﬁ Subgraph Prompt text Raw image

W 3D scene extracting

Input image with
target object pair 0,,0,)

” ~

- -~

e

» Target object prompt

<TIGT> table <TGT> sofa

» Spatial relation prompt

Figure 2: The overview of our proposed framework.

<OBJ> table <REL> near <OBJ> sofa
<OBJ> sofa <REL> left <OBJ> bed
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3D-SG-based Visual Spatial Description

B Method

» Model Details: 3D Scene Extraction Step 1 Step 2 Step 3
2D Object Detection Layout Estimation 3D Object Detection

e

B l
RN | .

n
» ResNet| — 1l
LN
vis; The flatted ROI feature of object 7. tA“en“‘m
. . . . . H e Relation Sum
stze; The length, width, height of object 3. 3 I Features :

. . . . : R ¥ ¥ ¥
loc; The relative centroid coordinates of object :. Fastaer-RCNN Layout Estimation MLP MLP MLP
ori. Ihe rotation value of three degrees of freedom [ Network T A

* of object <. @g J& - size} orit  loc}
f f f
Layout System

> vis}

2D Proposals
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3D-SG-based Visual Spatial Description Ne*T

. Method Algorithm 1: G03D-S2G Creating

Input: max object number NV,
) . two target objects index 01, 04,
» Model Details: Graph Creating confidency of each object f,
centroid of each object C,
distance threshold d,
noise confidency threshold p

: Output: adjacency matrix AV XV
\. initialization: A = 0.
0. 0 // target object edges
i i 1 Alo1,)]1=1, A[;, 01]1 =1,
Alog,:1=1, A[:;, 00] =1,
G= (EaV) // add special edges
foriin N do
forjin N do
dist = |C; — Cj|
if dist > d then

o
1
0
[ a0
end
1
0

»Target-pair edge
»Target-surrounding edge

end

0
1
\. 1
»Near-neighbor edge .
1 end

1
0
0
1
’ ¢ . // remove noise objects
Figure 3: Three types of edges of GO3D-S2G. for i in N do

if f; < p and o; is not target object then
| Ali,:] =0, A[,i]=0
end
end
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3D-SG-based Visual Spatial Description

B Method

» Model Details: Scene Subgraph Selecting mechanism (S3)

Stepl. Scoring edges | Step2. Choosin §hzghest-scored | Step3. Assembling - —
. (first-order) neighbors of | and pruning
i arget objects | ®
Eq. (5) i »Target object-1 (O,) perspective E>Assemble two perspectives \
§;,— FFN —-a,; 1 I [——————— 3 -
: : ' |
| | A
N Yo l LA I
| | 1 1 1 |
| mang| | e el
Do N 1»Pruning lower edge in the ——
| 01700103 | | I cycle
w1 : m—————n
I OAG\/DA4/ I : : I Gsub : /.
e b : | I
| | 1\ | k- 4
| | e ‘ 5
Figure 4: Scene subgraph selecting mechanism. -

[




3D-SG-based Visual Spatial Description

Neg*T

B Method

» Model Details: Prompt Learning for LM Decoding

above, top, over

\
rea,

\, 164
\behird,

left

bottom, below, lowet, under

/

_ Universal direction mapping prototype

0, consulting

< Oy, left rear, O, >

Figure 5: The prototype of direction-term mapping.

prompt texts, 1) target object prompt, e.g.,
<TGT> table <TGT> sofa

and 2) spatial relation prompt, e.g.,

<0BJ> table <REL> near <OBJ> sofa

<0BJ> sofa <REL> left <OBJ> bed

Pre-definitions

Subject centroid: z,, ys, 25, Object centroid: z,, Yo, 2o
coordinate system: x-toward, y-up, z-right
z,y,z € [0,1]
dy = |Ts — 0|, dy = |ys — Yo| , d= = |25 — 20|

Back: (d, > d, and d,, d,, > 0.2,z, < )
dy > 0.2,dy,d, <0.2 “back”

Others are similar to front

Rule Direction Term
Front: (d; > dy and d., d; > 0.2,z > x,)
dy,d, <0.2 “front”
dy > 0.2,y > yo,d, <0.2 “front up”
dy > 0.2,y < yo,d, <0.2 “front down”
d, >0.2,2z4 > z,,d, <0.2 “front right”
d, > 0.2,z5 < 2,,dy <0.2 “front left”
> 0.2,ys > Yo, 2s > 2o “front up right”
“front up left”

> 0.2,ys < Yo, 25 > 2,  “front down right”
“front down left”

ST =T STy}
< e < <

5dz
Ay > 02,95 > Yo, 25 < Zo
,dz
, dz

> 0.2,y < Yo, 25 < 20

Up: (dy > d; and d,, d, > 0.2,y > y,)
Others are similar to front

Down: (dy > d, and d,, dy > 0.2,y < y,)
Others are similar to front

Right: (d, > d, and dy, d, > 0.2,2, > o)

Others are similar to front

Left: (d. > d; and d,, d, > 0.2,z, < z,)
Others are similar to front

(dz,dy,d. < 0.2) “next to”

Table 7: Direction term mapping rules.
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3D-SG-based Visual Spatial Description Ne*T

B Experiment

> Main Results

VSD-v1 VSD-v2
BLEU-4 METEOR ROUGE CIDEr SPICE BLEU-4 METEOR ROUGE CIDEr SPICE
e VL-PTMs
Oscar 37.17 35.06 6647 427.21 6741 20.90 23.83 50.96 221.61 40.12
VL-Bart 52.71 41.96 77.57 471.21 67.83 20.78 22.83 48.49 213.26 40.04
VL-T5 52.58 41.94 77.63 47224 67.90 21.83 23.26 50.51  225.51 41.86
OFA 53.59 41.74 77.68 469.23 67.03 22.53 24.93 5127 22729 41.63

e YL-PTMs + VSRC (Zhao et al., 2022)
VLBart-ppl 53.49 42.14 7779 47434 6797 21.44 23.08 50.80  226.52 40.16

VLT5-ppl 53.71 42.56 78.33  480.32 68.72  21.79 23.49 5149 231.70 41.04
VLBart-e2e 53.60 42.45 78.15  476.47 68.18 21.71 23.41 51.22  228.18 40.79
VLT5-e2e 54.31 42.63 7838 481.13 68.74 2247 23.50 51.52 231.70 41.07

e VL-PTMs + 3D scene features

3DVSD (Ours) 56.85 43.25 79.38 483.05 68.76 26.40 26.87 55.76 27293 46.97
(+2.54) (+0.62) (+1.00)  (+1.92)  (+0.02)  (+3.87) (+1.94) (+424)  (+41.23)  (+5.11)

Table 2: Main results on two datasets. Bold numbers are the best, and underlined ones are the second best.
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3D-SG-based Visual Spatial Description

B Experiment

» 2D v.s 3D modeling

295 | 2D Info E B 3D Info 097 { 47 28 | w/o orientation w/o size E Full ¢ o~ 148
064 < 26.4

<!' . 1 266 |
a 27 E) B 46.5 E)
- | 455 - e
m f M ! , |

451 g 43.55 25| 94,13 24.26 44.17 44.25 | 45

22 ‘ 43 235 ‘ . 435
BLEU-4 SPICE BLEU-4 SPICE

Figure 6: Comparison of 2D and 3D method on VSDV2. Figure 7: Ablation results of 3D features on VSDv?2.
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3D-SG-based Visual Spatial Description

Neg*T

B Experiment

» Case Study

With Beam Search With Scene Subgraph Sampling
o VLTS5-e2e: e 3DVSD:
The books are on the chair. The books on the are behind the chair.
There are some boolk s above the chair. Some books are on the behind the chair.
Some Hook: are on the black chair. The bools are behind the chair next to the
e 3DVSD: The bools on the are behind the chair near the
The book is behind the chair. The book: on the are behind the chair next to the
Some books are behind the chair.
There are some bools behind the black chair.
e VLT5-e2e: e 3DVSD:
The is near the | oo, The gray isonthe oo
The gray is under the 00, The on the is in front of the
There is a white onthe oo The on the is on the right of the
e 3DVSD: The on the is in front of the shelf.
The isonthe 00, The is on the | 00" next to the
Weigh @ mm W The white blankc is onthe " oo,
eatmep Sheyy The grey is on the 0o

Figure 9: Qualitative results of generated descriptions with beam search decoding and S mechanism, respectively.
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3D Scene Graph-based Applications

Outlook of Future Directions




Outlook of Future Directions

B Summary Visual SG

» Vision&language Scene Graph Modeling

Vision-Language
Learning ]
. . Textual SG
» Video Scene Graph Modeling
p@ [anguage
Wdeo—Laz.:zgu 2 Spatial-Language
Leatning R L earni
» 3D Scene Graph Modeling 4 N\ &

Y v &
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Outlook of Future Directions

B What Next?

> Applying Scene Graph Representations into More Scenarios and Applications

* Image/Video Retrieval /1. Improving cross-modal alignment: )
more fine-grained vision-text matching
* Image/Video Editing
2. Enhancing multimodal fusion:
* Image/Video Generation semantic-level feature learning
*  Video Moment Localization 3. More controllable end-task prediction:
highly structured modal representation
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Outlook of Future Directions

B What Next?

> Automatic Learning of Scene Graph Representations

* Low-quality SG annotations decrease the efficacy
of the SG features for end tasks.

* How about: Inducing the SG structure along with
the end task? Such that the automatically generated
SG structures are most coincident with task need.

Latent Structure Induction

Grammar Induction

35

25 -

15

5

15
R@50

25

En—De (BLEU)

15

6

12
R@5

18

35

25

15

35

25

15

15

25 35
R@100

(a) Visual scene graph parsing performance

20

30 40
R@10

(b) Language scene graph parsing performance
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Outlook of Future Directions

B What Next?

» Constructing Semantically Universal Scene Graph (USG)

Text: abstract semantics
* Image: detailed semantics

* Video: temporal dynamics

Sound: vocal attributes

Modality-agnostic
Language-agnostic

* 3D: depth features - Domain-agnostic \_ )

- / Y
'

N Highly Structured Universal World Model

Semantic Representation
World
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Universal Structured NLP (XNLP) Demo Ne*T

~HjJ XNLP: An Interactive Demonstration System
for Universal Structured NLP

https://xnlp.haofei.vip/

[1] Hao Fei, Meishan Zhang, Min Zhang, Tat-Seng Chua. XNLP: An Interactive Demonstration System for Universal Structured NLP. 2023.
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XNLP Demo

. Motivation

» Structured Natural Language Processing (XINLP)

55_\_'nlawliu Parsing I/ [nformation Extraction \I
* Many NLP tasks can be reduced into : — —a—
- B (:w o p- 4 . A

structural predictions @ N o | ¢ e i
@ Godd do | GO @ G G G G Gew |

Dependency Parsing Consistency Parsing Named Entity Recognition Relation Extraction Event Extraction
/ Semantic Analysis N\ Sentimen&Opinion Mining R
* 1) textual spans | | I
| P N N o | B B 3 GG Vg

* 2) relations between spans | Semanic ol Laeing ~ Coreference Resfuion J Sentinent Anchsis Seniment Tplet Opnion Role Labeling

More Emerging XNLP Tasks to Define -+
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XNLP Demo

. Motivation Syntactic Parsing /" 7 7 Information Extraction

= i) () (=)
) (e P I PL_\-'_'I r "'* I
,;_\ fo AN [#3] — ~ ~
> : G CONE N I
Universal XNLP swmas e e’s & e L P
Dependency Parsing Consistency Parsing Named Entity Recognition Relation Extraction Event Extraction

— o — - E—— — ——

/ Semantic Analysis \ I/ Sentimen&Opinion Mining \I
. . . | |
* Unified Sentiment Analysis R o P |
, iy I ~, | - B (=) -
e ™ \ I == Yot AT # ~, I
| bods " oo an o5 e | L0LOR
l Semantic Role Labeling Coreference Resolution ] I Swﬂfrﬂ ?nrﬂan:fu\ Smg;.l:;ﬂ.rg:;phr Opinion Role Labeling

 Universal Information Extraction
O a comprehensive and effective approach for
unifying all XNLP tasks is not fully established. ol _sp_an;g: h
\QV | [b Span-attribute
OO, DTN | |
|5 Relationiype

e > > D '

> Unification with LI.M Unification of XNLP

Figure 1: Illustration of the Structured NLP (XNLP)
v One model for all tasks, and the unification of XNLP by decomposing into
the predictions of spans and relations.
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XNLP Demo

B Demo System

> System Design

Frontend
Pre-defined || New task } Brat
XNLP task definition | QEQ visualization
selection by user | )
e - -
S User feedback 3(9)- | Prediction
[} o Input text of result @): rationale
\_ vy

Request Multi-turn interactions Response

N>

In-context Prompting Post-processing

Task Task Task  Executing Structure formatting
description  demonstration  labelset format & data packlng

N

Broad-cover structure-aware
mstruction tuning

Backend
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B B 8 x 22 g % @
XNLP Demo [IEB R EEEER RN E R
£r ® 3 [XNLP: Universal Structured NLP) & & 2
B & % x W o 2k & B &
B O N = & &5 % s B

B Demo System

Event Extraction

==

» Screenshot

— Task Description/Instruction — — Task I/0 Demonstration — — Task Labelset — — Format —
Event Extraction involves identifying - Input Text: "John traveled to Paris for a - Event (Trigger) types: [trigger term, argument
events or incidents described in a text business meeting last week.” ['product_launch’, ‘travel’, term (role)], such as
and extracting relevant information - Output (trigger (event)-argument (role) ‘conference’, ‘meeting’, "election’, [traveled, John
about these events, including their structure): ‘merger’, ‘protest’, ‘celebration’, (participant)], [traveled,
triggers and associated participants. [traveled (travel), John (participant)], ‘awards_ceremony’, ‘performance’, Paris (destination)],

[traveled (travel), Paris (destination)], "disaster’, 'press_conference’, [traveled, business
[traveled (travel), business meeting ‘announcement’, ‘birthday_party’, meeting (purpose)],
— Language — — Domain —

— Input —

The artist painted a stunning landscape on the canvas. m

0@ ‘ Clear |

— Visualization of Prediction —

Destination:
Pzrticipant Th
e “argument

The artist painted a stunning landscape on the canvas.

®)
o

— Prediction Rationale —

e

1. The trigger term "painted” is identified as the event happening in the sentence. It indicates an action related to
creating art.

2. The argument "The artist” is identified as the participant in the event. This phrase refers to the person performing
the action of painting.

3. The argument "a stunning landscape” is identified as the theme of the event. It describes what the artist painted
on the canvas.

4. The argument "the canvas” is identified as the destination of the action. It represents the place where the artist
painted the landscape. [object Object] [object Object],[object Object],[object Object]

V1.3.5 | Visualisation empowered by brat 9 2

= e .



XNLP Demo

B Demo System

Syntactic Parsing
1. Part-of-Speech (POS) Tagging

(b7 B9 V62 R8s N (67 U EW8
The river flows gently through the lush valley.

2. Dependency Parsing

punct
e e % ne) [mouse |

The cat chased the mouse .

3. Constituency Parsing

ROOT
5
NP VP
PRP VBD PP IN
we went IN NP on
for oT NN

NP

https://xnlp.haofel.vip/

Semantic Analysis
1. Semantic Role Labeling (SRL)

- Purpose
-
o " e

The gardener watered the plants to help them grow healthier.

2. Coreference Resolution

i i
e

The cat was hungry. It meowed loudly for food.

3. Intent Recognition and Slot Filling
[Intent]| From city. - [Depart time) [Intent]

What flights are available from Pitisburgh to Baltimore on Thursday morning, and which airlines operate them?

Information Extraction
2. Relation Extraction

Tocation” "
The Statue of Liberty stands in New York Harbor.

1. Named Entity Recognition (NER)
[Movie [Date]

The movie Titanic was released in 1997.

3. Event Extraction

Locatlon
Instrument
largument [ 7717 "7 argument araumeny)

The musician played a mesmerizing tune on the violin at the concert.

Sentimen&Opinion Mining

1. Aspect-based Sentiment Analysis (ABSA) 2. Sentiment Triplet Extraction

) ) _ [espect e pinion Espect e ';.'191;__ inion;
The user interface is intuitive and easy to navigate. The movie's special effects were impressive, but the script lacked depth.

3. Opinion Role Labeling



https://xnlp.haofei.vip/




