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Abstract

Recent developments of vision large language models (LLMs) have seen remark-
able progress, yet still encounter challenges towards multimodal generalists, such
as coarse-grained instance-level understanding, lack of unified support for both
images and videos, and insufficient coverage across various vision tasks. To fill the
gaps, we present VITRON, a universal pixel-level vision LLM designed for com-
prehensive understanding, generating, segmenting, and editing of both static image
and dynamic video content. Utilizing an LLM backbone, VITRON incorporates
specialized encoders for images, videos, and pixel-level regional visuals within
its frontend architecture, while as its backend, employing a text-centric invocation
strategy for integrating diverse state-of-the-art off-the-shelf modules tailored for an
array of vision-related end tasks. Via this, VITRON supports a spectrum of vision
end tasks, spanning visual understanding to visual generation, from low level to
high level. Through joint vision-language alignment and fine-grained region-aware
instruction tuning, VITRON achieves precise pixel-level perception. We further
enhance its capabilities with invocation-oriented instruction tuning, allowing for
flexible and precise module invocation for downstream vision tasks. Demonstrated
over 12 visual tasks and evaluated across 22 datasets, VITRON showcases its
extensive capabilities in the four main vision task clusters, e.g., segmentation, un-
derstanding, content generation, and editing. Various demonstrations also illustrate
VITRON’s fortes in visual manipulation and user interactivity. Overall, this work
illuminates the great potential of developing a more unified and interactive visual
multimodal generalist, setting new frontiers for the next vision research.

1 Introduction
Recently, the field of multimodal large language models (MLLMs) has witnessed rapid and flourishing
development across multiple communities. Extensive research efforts have been directed towards
augmenting powerful, purely language-based LLMs with modules capable of visual perception,
thereby extending their applicability to MLLMs [1, 45, 57, 119, 70]. MLLMs, such as BLIP-2
[45], LLaVA [57], MiniGPT-4 [126] and GPT-4V [112] etc., demonstrate a robust and exceptional
capability in image understanding, paralleling the deep semantic comprehension of language. In
the realm of vision, the ability to process and comprehend dynamic videos is equally critical.
Concurrently, several MLLMs have emerged with a focus on video understanding, e.g., VideoChat
[46] and Video-LLaMA [120], demonstrating significant advancements in video comprehension.

Subsequent studies have sought to further expand the capabilities of MLLMs, with efforts bifurcating
into two primary dimensions. On one hand, there’s a deepening of MLLMs’ understanding of
vision, transitioning from coarse, instance-level comprehension towards a pixel-level, fine-fined
understanding of images, thereby achieving visual regional grounding capabilities, as seen in GLaMM
[78], PixelLM [79], and MiniGPT-v2 [13], etc., alongside the counterparts in pixel-grounding video
LLMs [67]. On the other hand, there’s an expansion in the breadth of functionalities MLLMs
can support within the vision field. A portion of the research has already ventured into enabling
MLLMs not just to comprehend input vision signals but also to support the generation and output of
vision content, with systems like GILL [39], Emu [90], etc., flexibly generating image content, and
GPT4Video [99] and NExT-GPT [104] achieving video generation.

We posit that the future trend of vision LLMs necessarily involves the enhancement of their capabilities
towards a high degree of unification, i.e., multimodal generalists. However, our observations reveal
that despite the diversity of existing vision LLMs developed by the community, there is still a clear
lack of unification. First, almost all existing vision LLMs treat images and videos as separate entities,
either supporting only images or videos [1, 90, 126, 120]. We argue for a unified vision MLLM
framework that concurrently supports both images and videos, acknowledging that vision inherently
comprises both static images and dynamic videos - both core components of our world and largely
interchangeable in most scenarios. Second, the current support for vision functionalities in MLLMs
is found wanting, with most models only capable of understanding [57, 126], or at most generating
images or videos [23, 99]. We contend that future MLLMs should embrace a broader spectrum of
vision tasks and operations, enabling unified support for all vision-related tasks and achieving an
“one for all” capability, which is vital for real-world applications, especially in vision creation that
often involves a series of iterative and interactive operations. For example, users typically start by
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Model Vision Supporting Pixel/Regional
Understanding

Segmenting/
Grounding Generating Editing

Image Video
Flamingo [1] ✓ ✗ ✗ ✗ ✗ ✗
BLIP-2 [45] ✓ ✗ ✗ ✗ ✗ ✗
MiniGPT-4 [126] ✓ ✗ ✗ ✗ ✗ ✗
LLaVA [57] ✓ ✗ ✗ ✗ ✗ ✗
GILL [39] ✓ ✗ ✗ ✗ ✓ ✗
Emu [90] ✓ ✗ ✗ ✗ ✓ ✗
MiniGPT-5 [125] ✓ ✗ ✗ ✗ ✓ ✗
DreamLLM [23] ✓ ✗ ✗ ✗ ✓ ✗
GPT4RoI [122] ✓ ✗ ✓ ✓ ✗ ✗
NExT-Chat [118] ✓ ✗ ✓ ✓ ✗ ✗
MiniGPT-v2 [13] ✓ ✗ ✓ ✓ ✗ ✗
Shikra [14] ✓ ✗ ✓ ✓ ✗ ✗
Kosmos-2 [72] ✓ ✗ ✓ ✓ ✗ ✗
GLaMM [78] ✓ ✗ ✓ ✓ ✗ ✗
Osprey [117] ✓ ✗ ✓ ✓ ✗ ✗
PixelLM [79] ✓ ✗ ✓ ✓ ✗ ✗
LLaVA-Plus [58] ✓ ✗ ✗ ✓ ✓ ✓
VideoChat [46] ✗ ✓ ✗ ✗ ✗ ✗
Video-LLaMA [120] ✗ ✓ ✗ ✗ ✗ ✗
Video-LLaVA [52] ✓ ✓ ✗ ✗ ✗ ✗
Video-ChatGPT [61] ✗ ✓ ✗ ✗ ✗ ✗
GPT4Video [99] ✗ ✓ ✗ ✗ ✓ ✗
PG-Video-LLaVA [67] ✗ ✓ ✓ ✓ ✗ ✗
NExT-GPT [104] ✓ ✓ ✗ ✗ ✓ ✗
VITRON (Ours) ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparisons of existing (partially, imperfect coverage) representative vision LLM.

generating images from text, transforming an idea into visual content; and then refining this content
through further fine-grained editing to add more details; following, proceeding to create dynamic
content by generating videos from the images; and finally, engaging in several rounds of iterative
interaction, such as video editing, to enhance and finalize their creation.

To address these gaps, this paper introduces VITRON, a pioneering universal pixel-level vision
LLM. First, VITRON leverages a backbone LLM for comprehending, reasoning, decision-making,
and multi-round user interactions. To perceive both image and video modal signals and support
fine-grained user visual inputs, VITRON incorporates encoders for images, videos, and regional
box/sketch-specified inputs. On the backend, several powerful off-the-shelf image and video modules
are integrated for decoding and executing a wide range of vision tasks, spanning from lower to higher
level, such as visual understanding (perceiving and reasoning), generating, segmenting (grounding
and tracking), editing (inpainting). By adopting a text-centered invocation approach for module
integration, VITRON not only achieves system unification but also ensures alignment efficiency and
system scalability. Figure 1 vividly depicts VITRON’s comprehensive functionalities in four major
visual-related task groups, and highlights its key strengths.

Our overall training for VITRON aims to equip it with robust and powerful vision understanding
and manipulation capabilities. We start by undertaking a joint vision-language alignment learning
between the frontend and the center LLM, to imbue basic vision understanding. Further, to achieve
pixel-level perception, we introduce fine-grained spatiotemporal vision grounding instruction tuning,
training LLM on grounding predictions and pixel-aware perception for images and videos. Lastly,
to ensure VITRON can flexibly and accurately invoke downstream modules, we propose invocation-
oriented instruction tuning. By constructing a rich number of instruction-tuning examples across
various pixel-level task scenarios, VITRON has been taught to faithfully follow instructions.

Extensive experiments covering 12 tasks across 22 datasets are performed. Leveraging its advanced
architecture as a multimodal generalist, VITRON demonstrates proficiency in a comprehensive range
of vision tasks. Notably, the unified system’s performance is on par with or even surpasses singleton
state-of-the-art (SoTA) specialists on specific tasks. For each task, demo visualizations highlight
VITRON’s robust multi-round user interaction and visual manipulation skills. To our knowledge,
VITRON is the first vision LLM generalist that possesses a grand unification of various pixel-level
visual capacities for understanding, generating, segmenting, editing of both images and videos. With
VITRON, we aspire to create a powerful open-sourced, interactive vision system that can compete
with industry-level vision-language systems like OpenAI’s DALL-E series [7] and the Midjourney
[71], thereby aiding the advancement of academic research.
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2 Related Work

Achieving a profound understanding and comprehensive operational capabilities in vision represents
a significant topic within the field of artificial intelligence (AI). The relevant communities have
developed a wide array of tasks in this regard. These tasks range from low-level visual pixel
understanding, such as visual object detection [9, 59], image semantic segmentation [81, 111, 42, 48],
and video segmentation [113, 96], to high-level comprehension of overall semantics, including image
classification [21, 41], image/video captioning [64, 64, 29], and visual question answering (VQA)
[110, 105, 49, 114, 3] etc. Moreover, tasks also can be categorized from different perspectives, such
as visual understanding [44, 70], and visual generation [86, 31, 95, 26, 56] and editing [68, 6, 11].
Over the last few decades, various neural network models [43] have been developed, demonstrating
powerful effects across a spectrum of vision tasks. Increasing research has validated the impact of
scaling laws on neural network models: the effectiveness of vision models improves with the scaling
of model size and training data volume [22, 4], sometimes even exhibiting emergence capabilities
[100]. Consequently, recent years have seen the development of highly potent large-scale vision
models, such as ViT [24] and CLIP [77], which have achieved remarkable vision understanding
capabilities; models like SAM [38] and SEEM [127] have solved vision segmentation tasks; and
diffusion-based models [32, 76, 66, 27, 80] have reached unprecedented performance in vision
generation. Yet these models might lack an LLM as a central decision processor, unable to flexibly
interpret user intent or execute tasks interactively [91, 104].

The emergence of LLMs has garnered unprecedented attention over the past year, even fostering
hope for achieving human-level AI [69, 18, 93]. Extending the success of language understanding
in LLMs, researchers have promptly investigated and developed various MLLMs, enabling LLMs
to comprehend vision. By integrating high-performance vision encoders of images or videos into
language-based LLMs, these models have been made capable of understanding vision signals [70,
1, 45, 75, 57]. Going beyond vision understanding, further research has aimed to enhance MLLMs,
for instance, by endowing them with vision generation capabilities [39, 90] or supporting pixel-level
understanding and grounding [122, 117, 79]. We present a brief summary of some existing popular
vision LLMs in Table 1 in terms of the vision function supporting.

However, we observe that current research on vision LLMs lacks depth in two critical aspects. Firstly,
current vision LLMs tend to separate images and videos, supporting either one or the other. The
construction of a unified MLLM is crucial, as vision inherently encompasses both static images
and dynamic videos, both of which are core components of our visual world. Thus, covering both
aspects simultaneously is essential for optimally adapting to practical applications. Although models
like NExT-GPT [104] have relatively well-supported unification across various modalities, they fall
short in supporting pixel-level in-depth vision understanding and comprehensive support for vision
operation tasks. The second issue is the incomplete support for vision tasks by existing MLLMs.
Most current MLLMs primarily support understanding images or videos [57, 126], with only a few
supporting generation [23, 99] or editing/inpainting [103]. LLaVA-Plus [58], for example, supports a
broader range of vision functionalities by invoking external tools, but unfortunately suffers from a
lack of pixel-level in-depth vision understanding, and does not support pixel-aware user interaction,
further with its capabilities limited to image manipulation only. Building a generalist that can handle
(almost) all vision-related tasks and operations will be the next major trend for vision LLMs.

On the other hand, this work aims to build a vision system with exceptional user-friendly interactivity.
Our goal is to benchmark against some of the industry-level AI-empowered commercial vision
systems, such as OpenAI’s DALL-E series2 and the Midjourney3 system. For instance, DALL-E,
with its integration of the GPT-4V [112] system, can support mult-round user interaction, enabling
image generation and editing. However, it remains questionable whether these systems genuinely
support precise pixel-level vision understanding and manipulation capabilities. Moreover, these
systems do not simultaneously support a unified understanding and operation of both image and video
modalities. The most serious issue might possibly be that these outstanding systems are proprietary
and close-sourced, which significantly hinders research in this area. It is with these considerations in
mind that our system was proposed. To our knowledge, VITRON is the first vision LLM that not only
offers unified pixel-level capabilities for understanding, generating, segmenting, and editing both
images and videos but also boasts highly interactive user engagement.

2https://openai.com/research/dall-e
3https://www.midjourney.com
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Figure 2: Overview of the VITRON framework.

3 Architecture of VITRON

The overall framework of VITRON is shown in Figure 2. VITRON takes most common architecture
as in relevant MLLMs [57, 23, 104]. Three key blocks are included: 1) frontend vision&language
encoding, 2) central LLM understanding and text generation, and 3) backend user responding and
module invocation for vision manipulation.

3.1 Vision-Language Encoding Block

The text inputs (their embedding) are directly passed to the core LLM without additional preprocess-
ing. For both the encoding of images and videos, we employ the CLIP ViT-L/14@336px [77] as the
encoder, respectively. The encoders are with a patch size of 14, and convert all images and video
frames into 336px resolutions. The video encoder independently processes each frame, employing
average pooling across the temporal dimension to yield temporal representation features. This is
essential for the model’s effective capture of spatiotemporal representations within videos. Then, we
employ a regional pixel-aware visual extractor as the sketch encoder for user interaction. Typically,
the types of interactions can vary, including actions like clicking, drawing boxes or polygons, and
making scribbles. We mainly follow [117], and use the object-based representations of mask regions
that come from user’s inputs, which not only encode the pixel-level visual features but also gather the
spatial position information of each region. The region features are pooled with also the binary mask
of spatial geometry of the object region encoded, and the resulting embeddings are used. Then, the
multimodal feature representations are passed to the corresponding linear projection layers, which
are latter mapped into language-like embeddings that are understandable to the LLM.

3.2 Core LLM Block

In VITRON, an LLM serves as the pivotal agent. Technically, we utilize Vicuna (7B, version 1.5),
an open-source, text-based LLM that is extensively adopted across various MLLMs, as frequently
referenced in the relevant literature [17, 88, 120]. The LLM processes inputs from both language and
visual modalities to perform semantic understanding and reasoning. It generates outputs in two main
forms: 1) direct textual responses, and 2) formatted text for module invocation. The latter includes
detailed information on how to call specific modules. For example, based on the module invocation
text, the system might trigger an image segmentation module to isolate the region of interest around
a target object. We regard the foundational LLM as an agent, specifically tasked with producing
module invocation text. This approach is highlighted as an optimal trade-off between maintaining
effective alignment with the LLM-decoder and ensuring the training process remains efficient. Given
our system integrates a vast array of backend modules, linking various decoders and the LLM via
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No. Function Model Input Output
1 Text Generation - - -
2 Image Generation GLIGEN [50] Text Image
3 Image Segmentation SEEM [127] Text, Image Image, Mask | BBox
4 Image Editing GLIGEN [50] Text, Image [BBox | Mask] Image
5 ZeroScope [10] Text Video
6

Video Generation
I2VGen-XL [123] Image Video

7 Video Segmentation SEEM [127] Text, Video [BBox | Mask] Video, Mask | BBox
8 Video Editing StableVideo [11] Text, Video Video

Table 2: Summary of backend modules in VITRON.

feature embedding [104] instead would significantly increase the complexity and learning burden for
LLM-decoder alignment [98], which would also hinder the potential expansion of the system with
additional decoding modules.4 Thus, such a text-centered invocation approach decouples the LLM
from various modules, making the backend decoders more easily and flexibly replaceable.

3.3 User Responding & Module Invocation Block

To address the inability of text-based LLMs in handling various vision tasks, we consider integrating
off-the-shelf external modules. Once the LLM generates invocation details through understanding
the input and recognizing the user’s intent, the corresponding modules are activated to produce
non-textual outputs. Technically, we employ a variety of current SoTA expert models for vision
processing. For image generation and editing, we integrate the diffusion-based model GLIGEN [50].
For image and video segmentation, we opt for SEEM [127]. For video generation, ZeroScope [10]
and I2VGen-XL [123] are utilized for text-to-video and image-to-video tasks, respectively. Lastly,
for video editing functionality, we incorporate StableVideo [11]. In Table 2, we provide a detailed
look at the functionality of each backend module, along with a specification to the inputs and outputs
corresponding to each module.

4 Pixel-aware Vision-Language Understanding Learning
Building on the architecture of VITRON, we proceed to train the model to endow it with robust
vision understanding and task execution capabilities. The model training is structured into three
distinct phases. Initially, we undertake a joint training of the frontend with the language-based LLM
for vision-language alignment learning, enabling the model to acquire basic vision understanding
capabilities. Subsequently, we engage in fine-grained vision grounding instruction tuning to further
enhance the model’s pixel-level perception abilities. In the final step, we carry out invocation-oriented
instruction tuning, allowing the LLM to flexibly and accurately invoke downstream modules.

4.1 Step-I: Overall Vision-Language Alignment Learning
In line with the methodologies employed by current MLLMs, our approach involves mapping the
input vision language features to a unified feature space. This space creates representations that the
central LLM can interpret, thereby enabling it to process incoming vision signals effectively. For this
purpose, we utilize datasets comprising ‘image-caption’ pairs (CC3M [84]), ‘video-caption’ pairs
(Webvid [5]), and ‘region-caption’ pairs (RefCOCO [36]) drawn from existing established corpora
and benchmarks. When provided with an image, video, or specific visual region, we engage the
frozen LLM to generate a text description or caption that aligns with the reference caption.

4.2 Step-II: Fine-grained Spatiotemporal Vision Grounding Instruction Tuning

Our system leverages an invocation approach to execute various pixel-level vision tasks by utilizing
external modules, but the LLM itself has not undergone fine-grained vision training any. This
limitation prevents the system from achieving true pixel-level vision understanding. Also, possessing
pixel-level vision understanding would significantly enhance the system’s ability to accurately issue
commands for invoking the correct modules to perform tasks. To address this, we propose a fine-
grained spatiotemporal vision grounding instruction tuning for VITRON. The core idea is to enable
the LLM to ground the fine-grained spatiality of images and the detailed temporality of videos.

4Currently, there would be a debate in the community about which is better to bind LLM with backend
modules, discrete language tokens [98], or continual signal embeddings [39, 104].
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Technically, we leverage LoRA [33] to enable a small subset of parameters within the LLM to be
updated during the tuning.

Image Spatial Grounding. Considering that the LLM alone can only output text, we design it
to respond with the corresponding bounding box areas. We focus on two types of tasks: grounded
image captioning and referring image segmentation. Initially, for grounded image captioning, we
input an image and identify a specific object within it, prompting the LLM to describe the identified
object. Conversely, for referring image segmentation (where we consider outputting a bounding
box, akin to phrase grounding), the task involves inputting a complete image along with a related
phrase or sentence description, and the LLM is expected to output the object’s spatial bounding box,
represented by coordinate numbers (Xl, Yt, Xr, Yb). The X and Y coordinates are normalized real
values within the range [0, 1], where <Xl> and <Yt> indicate the top-left corner, and <Xr> and <Yb>
represent the bottom-right corner of the bounding box.

We primarily consider datasets such as Flickr30K Entities [73], RefCOCO [36], RefCOCO+ [115]
and RefCOCOg [62]. Utilizing GPT-4, we preprocess and expand the original data into a multi-turn
QA format, thereby generating the most suitable instruction-tuning data.

▶ Grounded Image Captioning:
Input:
Please generate a detailed caption for the given image,
and clearly link each part of the caption to specific ob-
jects or areas in the image which you can denote with a
bounding box with “object: (Xl, Yt, Xr , Yb)” format.
Output:
A girl wearing a pink dress is sitting on a long bench in
the park reading a book.
girl: (Xl, Yt, Xr , Yb),
pink dress: (Xl, Yt, Xr , Yb), ...

▶ Referring Image Segmentation:
Input:
Please identify the target object from
the given images based on the follow-
ing text query: “A man in a black shirt
holding a water bottle”.
Please output the bounding box (Xl,
Yt, Xr , Yb) of the target object.
Output:
(Xl, Yt, Xr , Yb)

Video Spatial-Temporal Grounding. For videos, the LLM must not only identify spatial regions
but also ground these within the temporal context of the video, essentially achieving video tracking.
Similarly, we explore tasks such as grounded video captioning and referring video tracking. While
the approach is akin to that used for images, it requires not just the output of object bounding box
coordinates in each frame but also the specification of the duration of the frames (Fs, Fe) in which
these coordinates are to be outputted. Here <Fs> denotes the starting frame number, and <Fe> means
the ending frame number. We mainly construct the required instruction tuning data from several key
video tracking datasets: LaSOT [25], GOT10K [34], DanceTrack [89], and MOT16 [63].

▶ Grounded Video Captioning:
Input:
Please generate a caption for the given video, and
link each part of the caption to specific objects in
the video with its temporal presence duration. You
should denote it with a bounding box with the start-
ing and ending frame number in format as “object:
(Xl, Yt, Xr , Yb | Fs, Fe)”.
Output:
A dog is running after a ball on the grass.
dog: (Xl, Yt, Xr , Yb | Fs, Fe),
ball: (Xl, Yt, Xr , Yb | Fs, Fe), ...

▶ Referring Video Tracking:
Input:
Please track the specified object throughout
the video based on the following given de-
scription, and mark its starting and ending
position in each frame: “A man is skiing
on a thick-snow-covered slope.”
Please output in the format of “(Xl, Yt, Xr ,
Yb | Fs, Fe)”.
Output:
(Xl, Yt, Xr , Yb | Fs, Fe)

Grounding-aware Vision QA. The grounding tasks mentioned above only touch upon the low-
level aspects of vision perception. However, in many scenarios, it’s essential for the LLM to possess
high-level, in-depth vision reasoning capabilities, building upon the foundational low-level pixel
grounding. Therefore, we further introduce grounding-aware vision QA, enabling the LLM to
undertake semantic-level QA tasks based on the grounded results. Specifically, we consider both
image-grounded QA and video-grounded QA. The data sources for these tasks remain the same as
mentioned previously. We again rely on GPT-4 once more to use its imaginative capabilities to design
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sensible and reasonable questions and answers based on the given grounding content, formatting
these into an instruction-tuning format.

▶ Grounded Image QA:
Input:
Based on the given image, please se-
lect the correct answer among all the
candidates: Q: Where is the child sit-
ting? A: 1) arms, 2) ground, 3) chair,
4) bed.
Please first identify and ground the tar-
get object (in coordinates) mentioned
in the question, and then proceed to
answer the question.
Output:
The target object mentioned in the
question is "child," with the position
given by (Xl, Yt, Xr , Yb). From this, it
can be determined that the child is be-
ing held by a woman, which means the
child is sitting on the woman’s arms.
Therefore, the answer is 1) arms.

▶ Grounded Video QA:
Input:
Based on the provided video, answer the following ques-
tion by choosing the most appropriate answer from the
options given. Q: If the rope in the video breaks, what
would happen to the person in the video? A: 1) running,
2) jumping up, 3) flying away, 4) fracture.
First, analyze the spatial position and temporality of the
target object mentioned in the question within the video,
and based on this analysis, determine the answer to the
question.
Output:
The objects involved in the question are the rope (Xl, Yt,
Xr , Yb | Fs, Fe) and the person (Xl, Yt, Xr , Yb | Fs, Fe),
with their relationship being that the person is climbing
with the assistance of the rope. Based on common sense,
if the rope were to break, the person would fall to the
ground from a height. The most likely outcome is that
the person would break a bone.

4.3 Step-III: Output-side Invocation-oriented Instruction Tuning

The above second phase of training endows both the LLM and the frontend encoders with the ability
to understand vision at the pixel level. This final step, instruction tuning for invocation, aims to
equip the system with the precise capability to execute commands, allowing the LLM to generate
appropriate and correct invocation text. This text is then used to trigger various backend task execution
modules. Different terminal vision tasks might require distinct invocation commands. To unify this,
we try to standardize the LLM’s response output into a structured text format, which includes: 1)
User response output, which directly replies to the user’s input. 2) Module name, indicating which
function or task is to be executed. 3) Invocation command, a meta-instruction for triggering the
task module. 4) Region (optional), specifying a fine-grained vision feature needed for certain tasks,
such as in video tracking or vision editing, where backend modules require this information. For the
region, based on LLM’s pixel-level understanding, a bounding box described by the coordinates (Xl,
Yt, Xr, Yb) will be output. Following, we exemplify a video tracking example for the structured
LLM response for module invocation.

▶ Structured LLM response for module invocation (with video tracking example):
Input:
Can you help me track the clock I circled in the video?

LLM response:
Sure! You provide a video where there is a female cop talking on the walkie-talkie, responding
emergency call, crime prevention. Also in the scene, the clock is green in color. Following I will outline
the clock in the video.
<Module> Video Segmentation </Module>
<Instruction> segmentation: clock </Instruction>
<Region> (0.23, 0.35, 0.11, 0.26) </Region>

To teach the LLM to produce the correct invocation responses, we need to create data specifically
designed for instruction tuning. A crucial aspect of this is ensuring that the data covers all possible
scenarios. We must take into account different ways users might interact with the system for each
functionality mentioned in Table 2 (except for text generation). For example, when requesting video
creation, a user might describe what they want purely in text, or provide a reference image as the
basis for the desired video. Similarly, for editing images or videos, users could express their editing
requests either through text, or by using sketches, scribbles and other interactions. Consequently,
the language model needs to be versatile in accepting various types of user inputs and generating an
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Function VITRON Input Module Input Data Source Amount

Image Generation Image-Caption CC3M [84] 2,000

Image Segmentation

, , , RefCOCO [36] 2,000

, , , , , RefCOCO [36] 2,000

, , Object-Name gRefCOCO [54] 2,028

Image Editing
, , , COCO2017 [53] 1,992

, , Bounding-Box MagicBrush [121] 2,000

Video Generation
Video-Caption WebVid [5] 2,000

, LAION-400M [82] 2,000

Video Segmentation
, , , , WebVid [5], VG [40] 2,982

, , , Bounding-Box WebVid [5] 1,974

Video Editing
, , , Editing-Query WebVid [5] 1,980

, , Editing-Query WebVid [5] 1,952

Table 3: Feature summary of our invocation-oriented instruction-tuning data. in image segmenta-
tion means the reference image provided by user. in video segmentation means the intermediate
referred video keyframe interpreted within system.

accurate invocation response that matches the requirements of the backend modules. Technically, we
make use of the existing annotated datasets for various vision tasks included in this work. For each
task under specific different user input scenarios, with the corresponding data, we design various
template dialogue-format examples. Based on these examples we then prompt the GPT-4 to generate
more samples under various topics and enriched scenarios. Finally, we collect a total of 22,000+
invocation-oriented instruction tuning samples. In Table 3 we provide a summary of these datasets,
including the input content of VITRON and modules as well as the data source&amount.

5 Experiments
5.1 Settings and Briefings
In this section, we aim to quantify the performance of VITRON on a variety of standard benchmarks
for downstream vision tasks and compare it against some of the currently strong-performing systems.
It is noteworthy that, given the countless vision tasks within the community, our experiments focus
only on 1-2 of the most representative tasks from each task category for validation. To ensure a fair
comparison, all subsequent experiments adopt settings same or similar to those of baseline systems,
with evaluations following established practices. Before conducting experiments, we perform targeted
pre-training on all of VITRON’s backend modules (such as GLIGEN and SEEM) on their respective
datasets. This ensures our system is optimized for the best possible performance during testing. Our
approach centers on training the linear projection layers of all encoders and efficiently fine-tuning the
language model using LoRA. To train our model, we employ the AdamW optimizer along with a
learning rate scheduler. The pre-training of VITRON unfolds in three phases, all conducted on 10×
A100 (80G) GPUs. Initially, we train the model using a global batch size of 128 and a maximum
learning rate of 3e-4, a process that takes approximately 40 hours. In the second tuning phase, we
adjust the model with a maximum learning rate of 1e-5, utilizing a global batch size of 90. This stage
of training lasts about 35 hours. The third phase of training employs a global batch size of 128 and
maintains the maximum learning rate of 1e-5, completing in roughly 10 hours.

Method RefCOCO [36] RefCOCO+ [115] RefCOCOg [62]

Val TestA TestB Val TestA TestB Val Test
LAVT [111] 72.7 75.8 68.8 62.1 68.4 55.1 61.2 62.1
GRES [54] 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0
LISA [42] 74.1 76.5 71.1 62.4 67.4 56.5 66.4 68.5
NExT-Chat [118] 74.7 78.9 69.5 65.1 71.9 56.7 67.0 67.0
VITRON 74.4 78.7 71.6 66.3 72.1 57.8 67.2 67.3

Table 4: Results (cIoU) of image referring image segmentation.
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5.2 Vision Segmentation
We consider both the image segmentation and video segmentation tasks.

Image Segmentation. Table 4 presents the results of referring image segmentation on three datasets:
RefCOCO [36], RefCOCO+ [115] and RefCOCOg [62]. We compare with several significant
models, including state-of-the-art non-MLLM approaches and the MLLM baseline, NExT-Chat.
It is evident that our VITRON, while slightly underperforming compared to NExT-Chat on the
RefCOCO Val&TestA datasets, achieves superior performance on the remaining sets. Figure 3 further
demonstrates an example of how our VITRON processes image segmentation tasks in an interactive
manner with user. When users sketch or doodle outlines on specific areas of an image, VITRON
is capable of accurately identifying the corresponding objects within the image. Following this
identification, it precisely generates the bounding box and mask area for the identified objects.

Figure 3: Demonstration of image segmentation. Figure 4: Example of video object segmentation.
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Method VidSTG [124] HC-STVG [92]
G-DINO [59] 25.3 19.5
Video-LLaMA [120] 28.6 26.1
Video-ChatGPT [61] 32.8 20.8
PG-Video-LLaVA [67] 34.2 28.3
VITRON 38.4 30.1

Table 5: Results (mIoU) of video spatial ground-
ing on two datasets.

Video Segmentation. For video segmentation,
we explore two tasks: video spatial grounding
(with bounding box) and video object segmen-
tation (aka., video tracking; with mask). Ta-
ble 5 showcases the comparisons between VIT-
RON and current state-of-the-art (SoTA) video
MLLMs in video spatial grounding. It is
clear that VITRON significantly outperforms PG-
Video-LLaVA. Table 6 presents a comparison of VITRON with some SoTA systems in video tracking,
where our system continues to demonstrate superior performance (only with the exception of the F
metric on the DAVIS 17 [74] Test-Dev).

Method DAVIS 17 [74] Test-Dev Youtube-VOS 2019 [109] Val

J&F J F Js Fs Ju Fu

RDE [47] 77.4 73.6 81.2 81.1 85.5 76.2 84.8
XMem [16] 81.0 77.4 84.5 84.3 89.6 80.3 88.6
DeAOT [113] 80.7 76.9 84.5 84.6 89.4 80.8 88.9
ISVOS [96] 82.8 79.3 86.2 85.2 89.7 80.7 88.9
VITRON 83.0 79.9 85.8 85.4 89.8 81.1 89.6

Table 6: Results of video object segmentation.
Figure 4 also demonstrates the process of video segmentation. VITRON successfully identifies,
localizes and tracks the target in the video based on the provided queries. Our system demonstrates a
remarkable ability to accurately and flexibly capture the user’s intent, even when the desired object to
be segmented is described in a highly implicit manner.

5.3 Fine-grained Vision Understanding

Next, we evaluate VITRON’s capability in achieving fine-grained vision understanding, focusing
mainly on region-level tasks for both images and videos.

Method METEOR CIREr
GRIT [102] 15.2 71.6
Kosmos-2 [72] 14.1 62.3
NExT-Chat [118] 12.0 79.6
MiniGPT-v2 [13] 15.0 86.4
GLaMM [78] 16.2 106.0
Osprey [117] 16.6 108.3
VITRON 16.8 110.8

Table 7: Performance of image regional
captioning on RefCOCOg [62].

Region-level Image Understanding. We test VITRON
on tasks including image referring expression comprehen-
sion and image regional captioning. The comparisons and
results shown in Tables 7 and 8 illustrate that VITRON
surpasses the best baseline across various datasets and met-
rics, proving its strong and accurate fine-grained seman-
tic understanding of images. Figure 5 further highlights
its fine-grained visual understanding capabilities through
regional image captioning, to accurately understand and
appropriately describe image regions.

Method RefCOCO [36] RefCOCO+ [115] RefCOCOg [62]

Val TestA TestB Val TestA TestB Val Test
OFA [97] 80.0 83.7 76.4 68.3 76.0 61.8 67.6 67.6
Shikra [14] 87.0 90.6 80.2 81.6 87.4 72.1 82.3 82.2
MiniGPT-v2 [13] 88.7 91.6 85.3 79.9 85.1 74.4 84.4 84.6
VITRON 90.3 92.5 88.7 83.4 88.6 76.1 85.8 86.4

Table 8: Results (accuracy) of image referring expression comprehension.

The above two tasks focus solely on the model’s ability to recognize at the region level. Taking a step
further, we delve deeper into assessing the capability for image semantics understanding, particularly
through image-based Visual Question Answering (VQA) tasks. These tasks effectively reflect the
model’s proficiency in comprehending the deeper semantic content of images. Table 9 displays
the results across a series of six datasets for image-based VQA. We primarily compare two groups
of models: those with and without pixel-wise vision grounding capabilities. The findings indicate
that models equipped with fine-grained grounding abilities indeed show stronger task performance,
suggesting that fine-grained grounding contributes to a more profound understanding of semantics.
Notably, our VITRON achieves the highest performance among the models evaluated.
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Figure 5: Demonstration of fine-grained visual
understanding via image grounding.

Figure 6: Demonstration of fine-grained visual
understanding via video grounding.

Figure 7: Demonstration of vision generation
across different modalities.
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Method Grounding OKVQA [83] GQA [35] VSR [55] IconVQA [60] VizWiz [30] HM [37]
Flamingo [1] ✗ 44.7 - 31.8 - 28.8 57.0
BLIP-2 [45] ✗ 45.9 41.0 50.9 40.6 19.6 53.7
InstructBLIP [19] ✗ - 49.5 52.1 44.8 33.4 57.5
MiniGPT-4 [126] ✗ 37.5 30.8 41.6 37.6 - -
LLaVA [57] ✗ 54.4 41.3 51.2 43.0 - -
Shikra [14] ✓ 47.2 - - - - -
MiniGPT-v2 [13] ✓ 57.8 60.1 62.9 51.5 53.6 58.8
VITRON ✓ 58.3 61.7 63.2 51.8 54.1 59.4

Table 9: Results (accuracy) on image-based VQA.

Region-level Video Understanding. Similarly, for videos, we evaluate the Region-level Video
Understanding capability. Building on observations from images, we now directly engage in video
QA tasks. Table 10 presents the results on video QA across four representative datasets. Interestingly,
while PG-Video-LLaVA has video grounding capabilities, it does not show better results than
Video-LLaVA, which lacks grounding. However, our VITRON achieves superior performance.
This indirectly proves that our system possesses more accurate video grounding capabilities (as
previously demonstrated in Table 4), aiding in better video semantics understanding. Additionally,
we showcase a visualization process illustrating how VITRON accomplishes fine-grained visual
understanding through video grounding tasks in Figure 6. VITRON’s precise perception of video
details ensures a more accurate understanding of content semantics, leading to stronger video
understanding capabilities.

Method Grounding MSVD-QA [107] MSRVTT-QA [108] TGIF-QA [51] ActivityNet-QA [116]

Accuracy Score Accuracy Score Accuracy Score Accuracy Score
VideoChat [46] ✗ 56.3 2.8 45.0 2.5 34.4 2.3 - 2.2
LLaMA-Adapter [28] ✗ 54.9 3.1 43.8 2.7 54.3 3.3 34.2 2.7
Video-LLaMA [120] ✗ 51.6 2.5 29.6 1.8 51.4 3.4 12.4 1.1
Video-ChatGPT [61] ✗ 64.9 3.3 49.3 2.8 51.4 3.0 35.2 2.7
Video-LLaVA [52] ✗ 70.7 3.9 59.2 3.5 70.0 4.0 45.3 3.3
PG-Video-LLaVA [67] ✓ 64.1 3.7 51.6 3.3 66.8 3.8 39.9 3.3
VITRON ✓ 74.3 3.9 60.8 3.6 71.5 4.0 49.4 3.6

Table 10: Results (accuracy and confidence Score) on video QA.

5.4 Vision Generation

Method FID (↓)
GLIDE [68] 12.24
SD [80] 11.21
NExT-GPT [104] 11.28
Emu [90] 11.66
GILL [39] 12.20
DreamLLM [23] 8.46
VITRON 8.34

Table 11: Text-to-Image
generation on COCO-
caption data [53].

Method FID (↓) CLIPSIM (↑)
CogVideo [31] 23.59 0.2631
MakeVideo [86] 13.17 0.3049
Latent-VDM [80] 14.25 0.2756
Latent-Shift [2] 15.23 0.2773
CoDi [91] — 0.2890
NExT-GPT [104] 13.04 0.3085
VITRON 11.42 0.3260

Table 12: Text-to-Video generation
on MSR-VTT [108].

Method FVD (↓) IS (↑)
AnimateAny [20] 642.64 63.87
DynamiCrafter [106] 404.50 41.97
SEINE [15] 306.49 54.02
VideoCrafter1 [12] 297.62 50.88
VITRON 190.74 55.65

Table 13: Image-to-Video gen-
eration on UCF101 [87].

Next, we assess our system’s capabilities in vision generation, focusing on three of the most representa-
tive types of generation tasks: text-to-image generation, text-to-video generation, and image-to-video
generation. These tasks broadly cover the spectrum of image generation requirements. Tables 11, 12,
and 13 showcase how our VITRON performs in comparison to other SoTA systems, including both
MLLM and non-MLLM synthesizers. The results clearly demonstrate that VITRON outperforms on
all three tasks. For instance, in both text-to-image and text-to-video generation tasks, VITRON shows
more advanced performance compared to NExT-GPT. Similarly, in the image-to-video generation
task, VITRON still outshines the SoTA baseline, VideoCrafter1, showcasing superior results.

Figure 7 illustrates the process of vision generation across different modalities, including text, image,
and video. Initially, users start with a basic text command, and VITRON is capable of transforming a
simple idea into a detailed video. However, if users are not satisfied with the video generated directly
from text, they can first generate an image from text, then fine-tune or edit this image, and finally
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create a satisfying video based on the adjusted image. Our VITRON, thanks to its robust interactive
capability via multi-turn dialogue, enables users to perform a series of consecutive operations,
ultimately facilitating smooth content creation. This fully helps meet the demands of real-world
application scenarios.

5.5 Vision Editing

Finally, we test the vision editing, examining both the image and video editing capabilities.

Image Editing. We use the MagicBrush dataset [121], which challenges models with an editing
query that demands a series of complex edits to an image. These edits include removing, changing,
inpainting, and adding elements. Since there are currently no MLLM systems that support image
editing, our comparison is limited to non-LLM expert systems. In Table 14, we present the perfor-
mance of different models across various metrics. Except for the L1 metric, VITRON demonstrates
stronger performance on CLIP metrics, indicating its stable image editing capabilities.

Method CLIPdir (↑) CLIPimg (↑) CLIPout (↑) L1 (↓)
InstructPix2Pix [8] 0.115 0.837 0.245 0.093
MagicBrush [121] 0.123 0.883 0.261 0.058
PnP [94] 0.025 0.568 0.101 0.280
NT-Inv [65] 0.121 0.752 0.263 0.077
Emu-Edit [85] 0.135 0.897 0.261 0.052
VITRON 0.138 0.904 0.265 0.063

Table 14: Image editing results on MagicBrush [121].

Method Target-
Editing

NonTarget-
Unediting

Text2LIVE [6] 4.5 1.3
Tune-A-Video [101] 7.8 4.6
VITRON 8.7 7.9

Table 15: Human evaluation on video
editing.

Figure 8: Demonstration of image editing. Figure 9: Demonstration of video editing.
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We then showcase the specific process of this image editing, as illustrated in Figure 8. VITRON
is capable of accepting different forms of user inputs (textual instruction or sketch) for precise
image edits. It maintains contextual consistency throughout a series of sequential editing operations,
ultimately achieving satisfactory results that meet the user’s expectations.

Video Editing. For video editing, the community currently lacks a standardized benchmark and
evaluation method akin to those for image editing. Therefore, we opted for a manual evaluation
approach. We asked different video editing systems to edit the same video based on the same query,
after which five individuals were asked to score the edited videos. The evaluation focused on 1) the
success of target content modifications and 2) the faithfulness/fidelity of non-target content. Table
15 presents the manual evaluation results for video editing. It is clear that VITRON outperforms the
two baseline systems in both respects, showcasing superior video editing capabilities. Following this,
we visualized the process of video editing by VITRON. Figure 9 illustrates this process. VITRON
competently handles video editing tasks, including modifications to the content’s subject, and changes
to the video’s style, etc.

6 Conclusion
In this work, we present VITRON, a first unified pixel-level vision LLM for seamlessly understanding
(perceiving and reasoning), generating, segmenting (grounding and tracking), and editing (inpainting)
both images and videos. Based on an LLM backbone, VITRON integrates image, video and regional
visual encoders in its frontend modules, and also adopts a text-centered invocation approach for
the integration of various SoTA modules for supporting a spectrum of vision end tasks. Then, the
joint vision-language alignment learning and fine-grained instruction tuning enable VITRON precise
pixel-aware perception. The invocation-oriented instruction tuning is further proposed for flexible
and accurate downstream visual module invocation. On 12 visual tasks across 22 datasets, VITRON
exhibits extensive capabilities in visual segmentation, fine-grained vision understanding, generation,
and editing. Also various demo visualizations reflect VITRON’s superior user-friendly interactivity
and visual manipulation abilities. Overall, this research showcases the great potential to build a
vision-language generalist that can advance toward a more unified and interactive AI, paving the way
for future vision research.

7 Potential Limitations and Future Work
System Architecture. This paper introduces a unified vision LLM capable of supporting nearly
all types of vision operations. However, our current system still employs a semi-joint, semi-agent
approach for external tool invocation. While this invocation-based approach facilitates the expansion
and replacement of potential modules, it also means that backend modules do not participate in
learning within a pipeline structure. This limitation is not conducive to the full-scale improvement
of the system, meaning the performance ceiling for different vision tasks will be constrained by the
backend modules. Future work should aim to integrate various vision task modules into a cohesive
unit. Achieving a unified understanding and output for both images and videos, alongside supporting
generation and editing capabilities through a single generative paradigm, remains a challenge.

User Interactivity. Unlike previous models specialized in singular vision tasks (e.g., Stable Diffu-
sion and SEEM), our system aims to facilitate deep interactions between the LLM and users, akin to
the proprietary DALL-E system in the industry. Achieving optimal interactivity is a core goal of this
work. VITRON leverages an existing language-based LLM, combined with appropriate instruction
tuning, to enable some degree of interaction. For instance, the system can flexibly respond to user
inputs with any intended message, producing corresponding vision operation results without requiring
user inputs to match backend module conditions precisely. However, our work still has significant
room to enhance interactivity. For example, drawing inspiration from the closed-source Midjourney
system, regardless of the decisions made by the LLM at each step, the system should actively provide
feedback to users to ensure that its actions and decisions align with user intentions.

Modal Capabilities. Currently, VITRON incorporates a 7B vicuna backbone LLM, which imposes
certain limits on its capacity to comprehend language, images, and videos. Building on the first point
regarding system architecture, future efforts could develop a comprehensive end-to-end system and
expand the model’s size to achieve a more thorough and comprehensive understanding of vision.
Additionally, efforts should be made to enable the LLM to fully unify the understanding of image
and video modalities.
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