Hao Fei

Sea AI Lab

Sep 13, 2022

Content

- Modeling NLP tasks

ニ、Modeling Information Extraction End-to-end

Modeling NLP tasks

\succ Classification

• Sentence-level classification

- Sentence-pair classification ٠
- Span-level classification •
- Token-level classification ٠
 - Input-output Synchronous token-level classification (aka. sequence labeling) •

• Input-output Asynchronous token-level classification

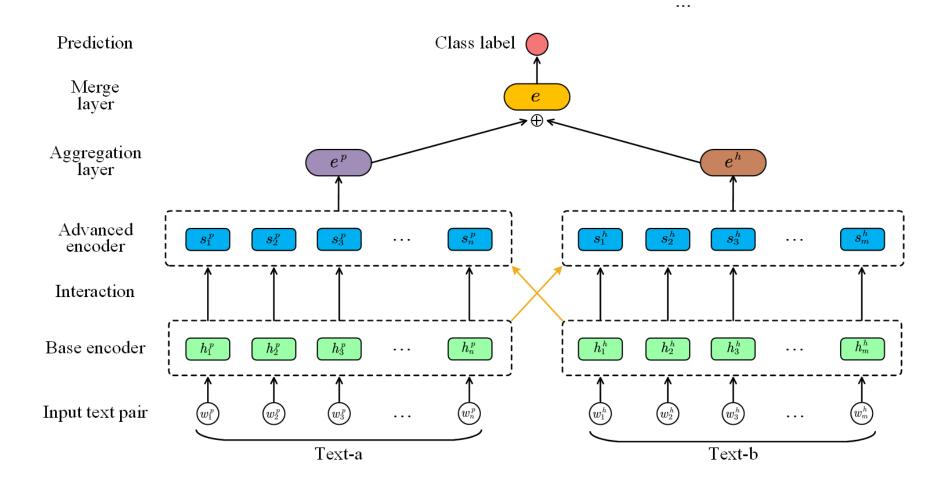
> Clustering

- Topic modeling
- . . .

> Regression

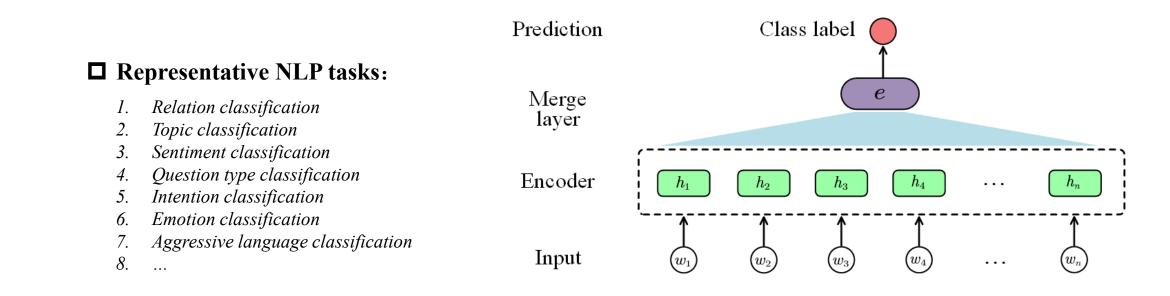
- Multi-label classification •
-

-. Modeling NLP tasks


Sentence-pair classification

D Representative NLP tasks:

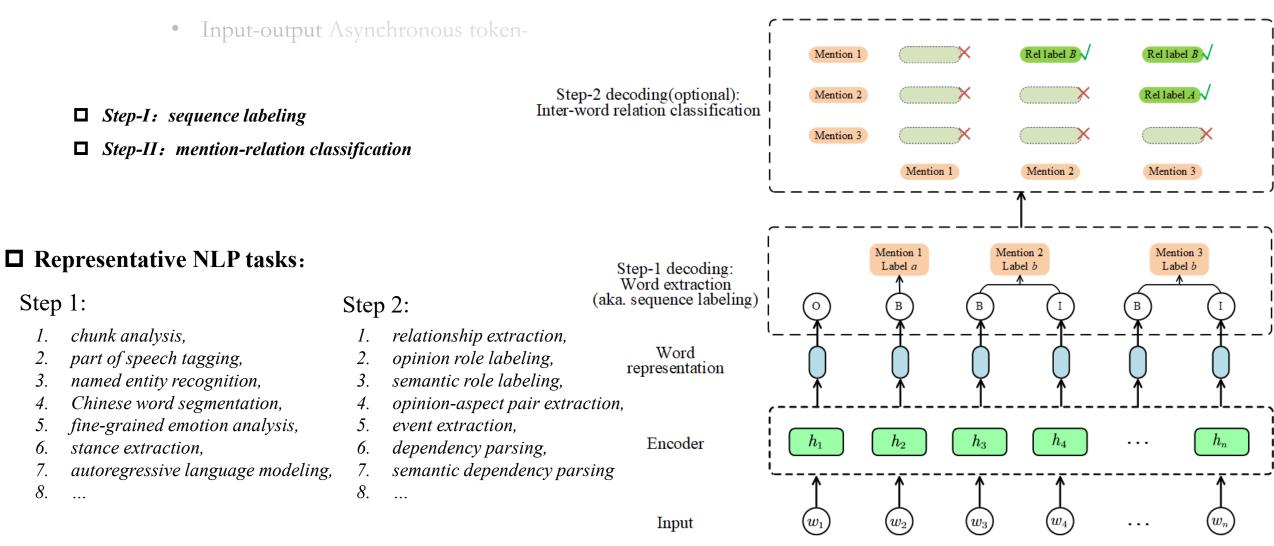
1. Recognition of Text Entailment (RTE)


2. Natural language inference

3. Paraphrase Identification

-. Modeling NLP tasks

Sentence-level classification


Modeling NLP tasks Rel label A Span1 -, Rel label C Span2 Step-2 decoding(optional): Inter-span relation classification Span-level classification Span3 Rel label B Span4 **Step-I:** span extraction **Step-II:** span-relation classification Span k Rel label D Span1 Span2 Span3 Span4 Span k [2, 5], Span label a [3, 6] [1, 4] ••• **□** Representative NLP tasks: Step-1 decoding: [3, 5], Span label c [1, 3] [2, 4] ••• Span extraction Machine reading comprehension 1. [3, 4], Span label a [1, 2], Span label b [2, 3] X ... 2. Extractive automatic summarization Nested NER 3. [3, 3] X [1, 1] [2, 2], Span label d ... Constituency parsing 4. Nested RE 5. Coreference/anaphora resolution Word 6. representaion 7. ••• h_4 Encoder h_2 h_1 h_3 . . .

 w_1

 w_{A}

- Modeling NLP tasks

- Token-level classification
 - Input-output Synchronous token-level classification (aka. sequence labeling)

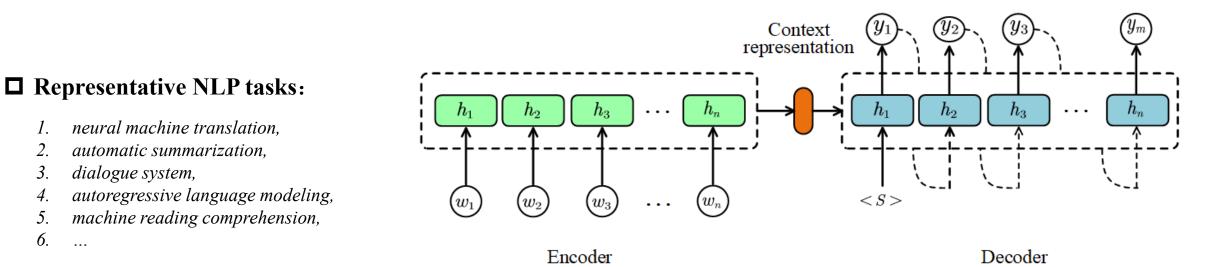
Modeling NLP tasks -,

1.

2.

3.

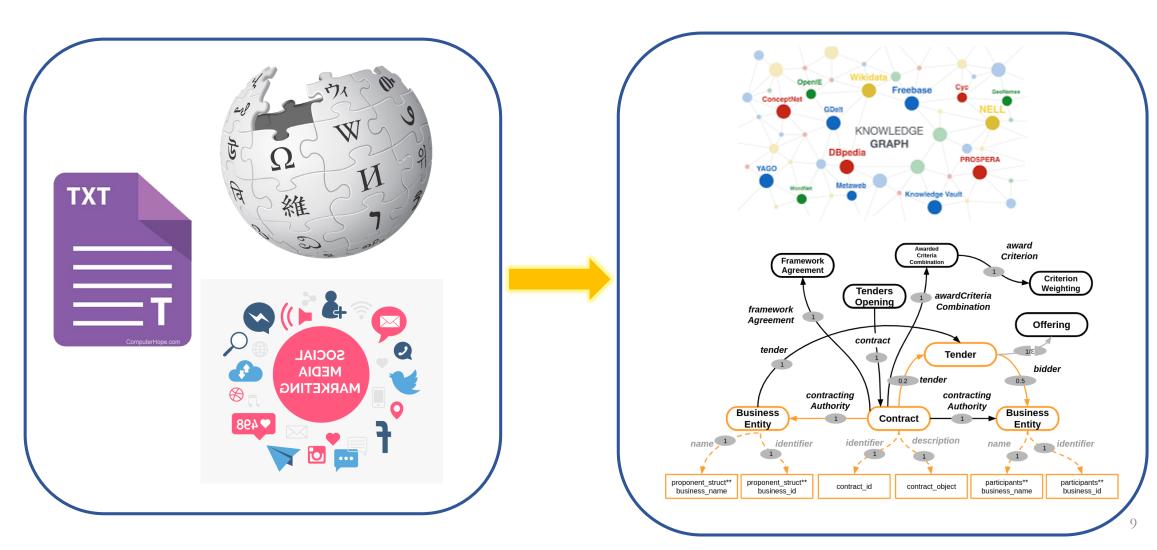
4.

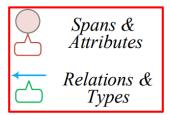

5. 6.

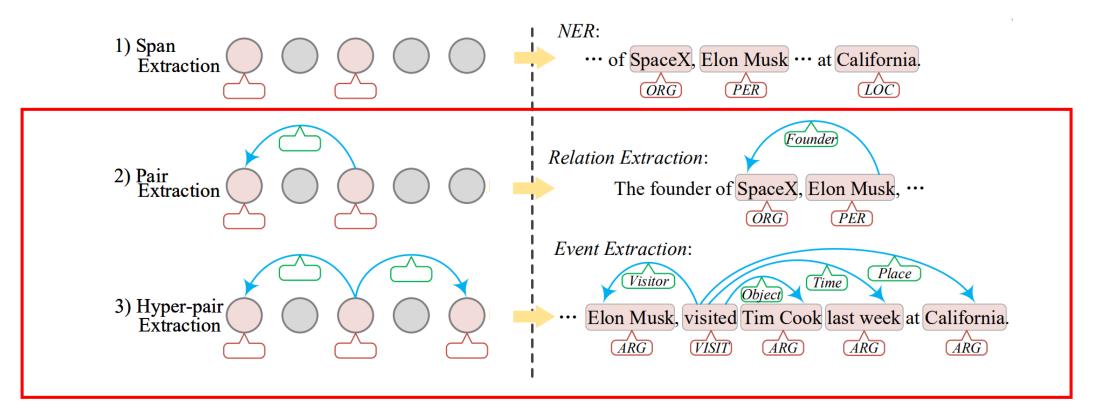
...

- Token-level classification ٠
 - Input-output Synchronous token-level classification (aka. sequence labeling)
 - Input-output Asynchronous token-level classification ٠

Aka.


- Sequence-to-Sequence framework \geq
- Encoder-Decoder framework \geq
- End-to-end framework \geq


8


Plain Text

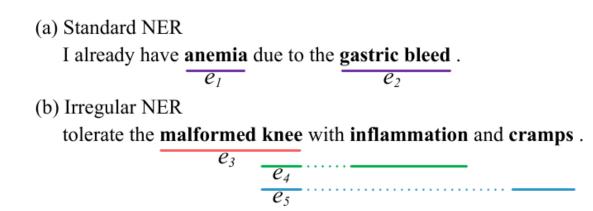
Structured Knowledge/Representation

二、Modeling Information Extraction End-to-end

(a) Information extraction task prototypes

(b) Representative task examples

Structural learning


Structure Prediction

- ➤ Well-defined, simple tasks:
 - dependency parsing
 - constituency parsing
 - relation extraction (RE)
 - aspect-opinion pair extraction (AOP)
 - emotion-cause pair extraction (ECPE)
 - aspect-based sentiment triplet extraction (ASTE)
 - *aspect-based sentiment quadruple extraction (ASQE)*
 - event extraction (EE)
 - semantic role labeling (SRL)
 - opinion role labeling (ORL)

- ➤ Complex tasks:
 - overlapped NER/RE/EE
 - nested NER
 - discontinuous NER
 - combinatory categorial grammar (CCG)
 - *semantic dependency parsing*
 - broad-coverage semantic parsing
 - meaning representation parsing (MRP)

二、 Modeling Information Extraction End-to-end

♦ Overlapped NER/RE/EE

- e₁ and e₂ are regular entity mentions.
- e_3 overlaps with two discontinuous mentions e_4 and e_5 at the token *knee*.

二、Modeling Information Extraction End-to-end

◆ Overlapped NER/RE/EE

- The entity 'Manhattan' nests with 'the Manhattan office', and the mention 'New York' nests with 'New York attorney'.
- The triplets (Eliot Spitzer, holder, New York attorney) and (Eliot Spitzer, location, <u>New York</u>) overlap on entity 'Eliot Spitzer'.

• Overlapped NER/RE/EE

Normal Triplet

two flat entities exist standalone, forming a relational triplet with no other triplet overlapping.

Single Triplet Overlap

- Single Normal-Entity Triplet one of the entities co-exists in other triplet(s).
- Single Overlaping-Entity Triplet

Based on Single Normal-Entity Triplet, the shared entities is further nested with the one in other triplet.

Pair Triplet Overlap

- Pair Normal-Entity Triplet *both of the two entities in one triplet co-exists in other triplet(s).*
- Pair Overlaping-Entity Triplet

both two entities are overlapped anywhere else, further with at least one entity nesting with other. the triplet <u>(Trump</u>, PresidentOf, United States) shares the entity 'Trump' with <u>(Trump, LiveIn, WhiteHouse)</u>

In triplet (<mark>Donald Trump</mark>, PresidentOf, the United States), the entity 'Donald Trump' nests with the one 'Trump' in (Trump, LiveIn, WhiteHouse)

(<mark>Trump</mark>, PresidentOf, <mark>United States</mark>) collides with the another one (Trump, Governance, United States)

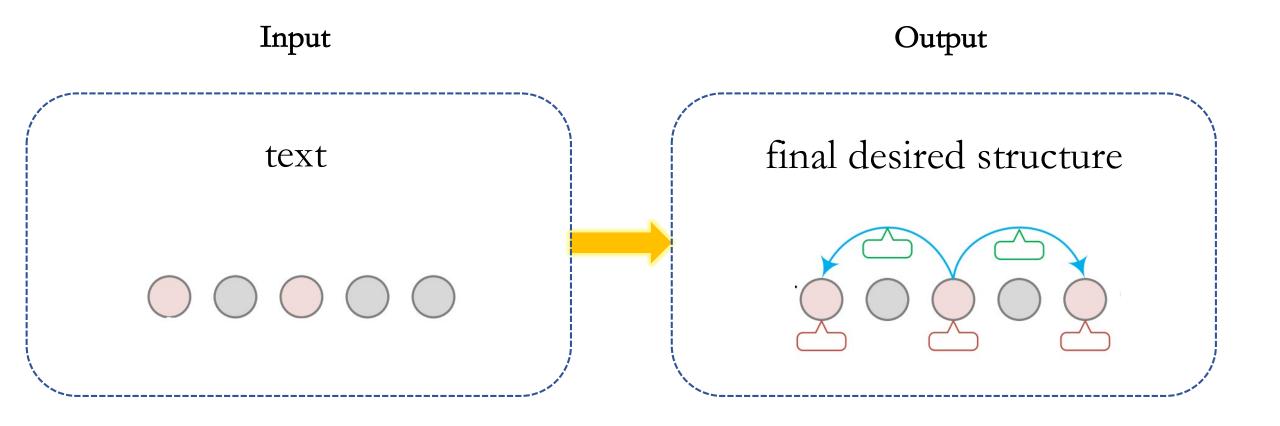
In (<mark>Trump</mark>, PresidentOf, <mark>United States</mark>) and (<mark>Donald Trump</mark>, Governance, United States</mark>), the entity 'Trump' nests with 'Donald Trump'.

◆ Traditional solution: Pipeline handling

Step1: token/span/clique extracting

text token/span/clique (w/ type)

Step1: relation detecting/grouping

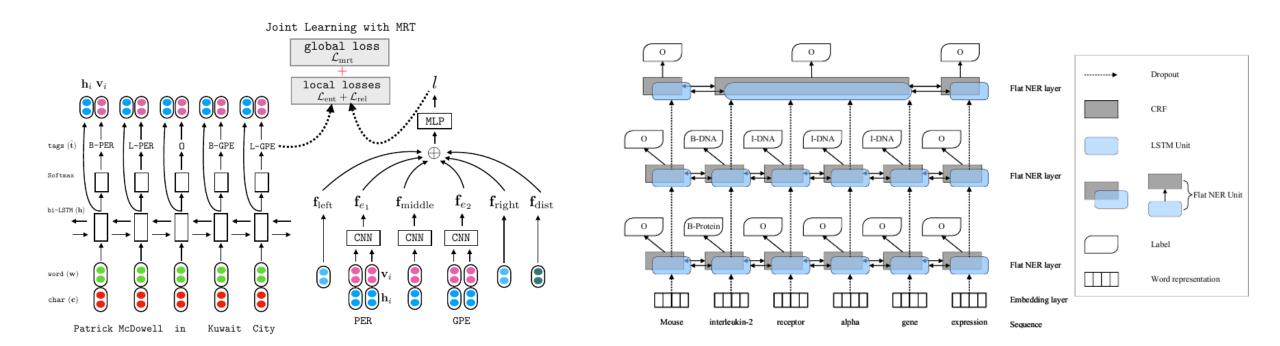

text + token/span/clique inter-relation (w/ type)

Step3 (post-processing): formatting into final desired structure

 token/span/clique
 final structure

 inter-relation
 final structure

◆ Recent solution: End-to-end handling



二、Modeling Information Extraction End-to-end

♦ End-to-end modeling

Multi-task learning

Stacking layer framework

• A Neural Layered Model for Nested Named Entity Recognition. NAACL-HLT 2018: 1446-1459

• Extracting Entities and Relations with Joint Minimum Risk Training. EMNLP 2018: 2256-2265

二、Modeling Information Extraction End-to-end

♦ End-to-end modeling

Type-B: Joint Decoding

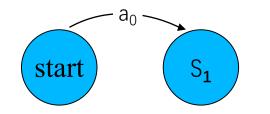
- > Transition model
- Span-graph model
- ➢ Hypergraph model
- Table-filling/Grid-tagging model
- Seq2seq (encoder-decoder) model
- Transforming into MRC-QA

▶

- 二、Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - ➢ Transition model

- \checkmark The process of a finite state automata.
- ✓ *Transition process from initial state to terminal state.*
- ✓ *The transition framework consists of two core elements: Action and State.*

- 二、Modeling Information Extraction End-to-end
 - \blacklozenge End-to-end modeling
 - ➤ Transition model



• State

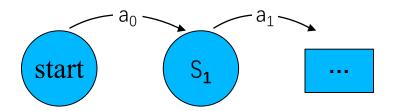
Corresponds to partial results during decoding start state, end state, \mathbf{S}_{i}

• Action

- 二、Modeling Information Extraction End-to-end
 - \blacklozenge End-to-end modeling
 - ➤ Transition model

• State

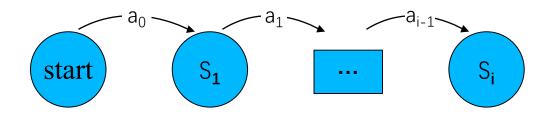
Corresponds to partial results during decoding start state, end state, \mathbf{S}_{i}


• Action

- 二、 Modeling Information Extraction End-to-end
 - \blacklozenge End-to-end modeling
 - ➤ Transition model

Corresponds to partial results during decoding start state, end state, S_i

• Action

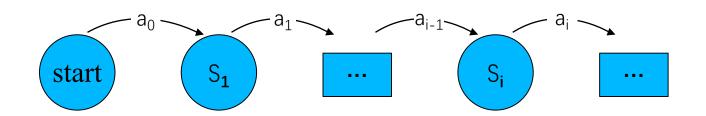

- 二、 Modeling Information Extraction End-to-end
 - \blacklozenge End-to-end modeling

➤ Transition model

• State

Corresponds to partial results during decoding start state, end state, \mathbf{S}_{i}

• Action

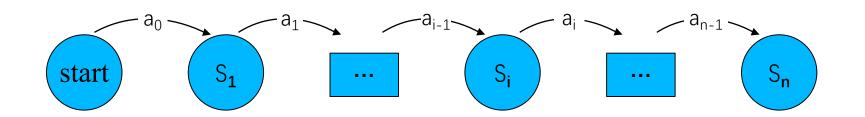

- 二、 Modeling Information Extraction End-to-end
 - \blacklozenge End-to-end modeling

➤ Transition model

• State

Corresponds to partial results during decoding start state, end state, \mathbf{S}_{i}

• Action

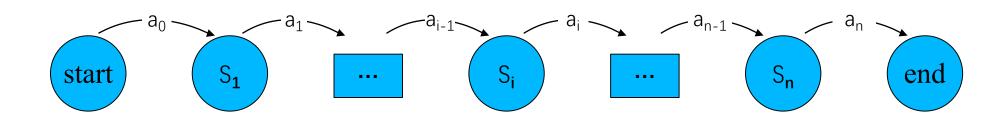


- 二、Modeling Information Extraction End-to-end
 - \blacklozenge End-to-end modeling
 - ➤ Transition model

• State

Corresponds to partial results during decoding start state, end state, \mathbf{S}_{i}

• Action


- 二、 Modeling Information Extraction End-to-end
 - \blacklozenge End-to-end modeling
 - ➤ Transition model

• State

Corresponds to partial results during decoding start state, end state, \mathbf{S}_{i}

• Action

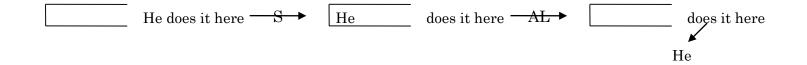
The operations that can be applied for state transition Construct output incrementally

Automata

- 二、Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - ➤ Transition model

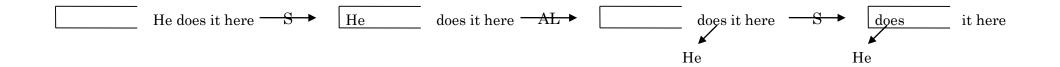
- S-SHIFT
- R-REDUCE
- AL-ARC-LEFT
- AR-ARC-RIGHT

_____ He does it here

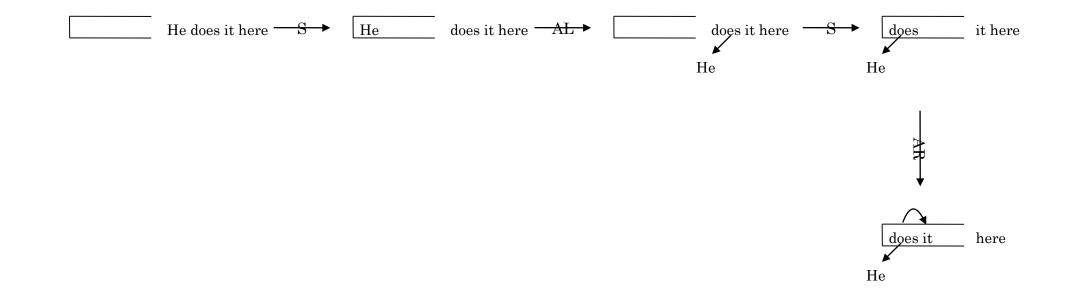

- 二、 Modeling Information Extraction End-to-end
 - \blacklozenge End-to-end modeling
 - ➢ Transition model

- S-SHIFT
- R-REDUCE
- AL-ARC-LEFT
- AR-ARC-RIGHT

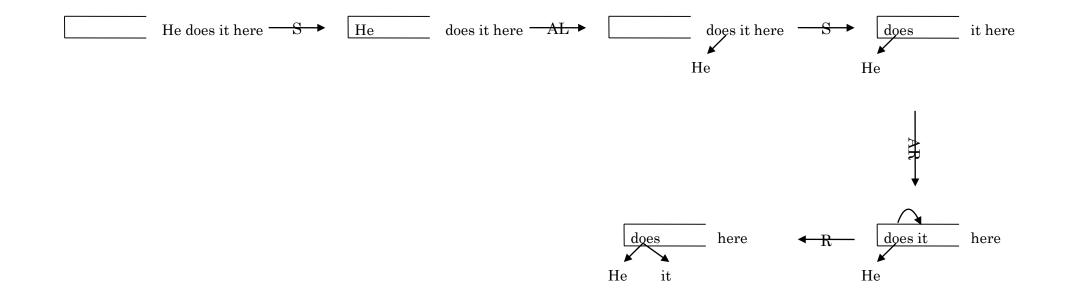
$\boxed{\qquad \qquad He \text{ does it here } } \qquad \boxed{\text{He}} \qquad \text{does it here}$


- 二、 Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - ➤ Transition model

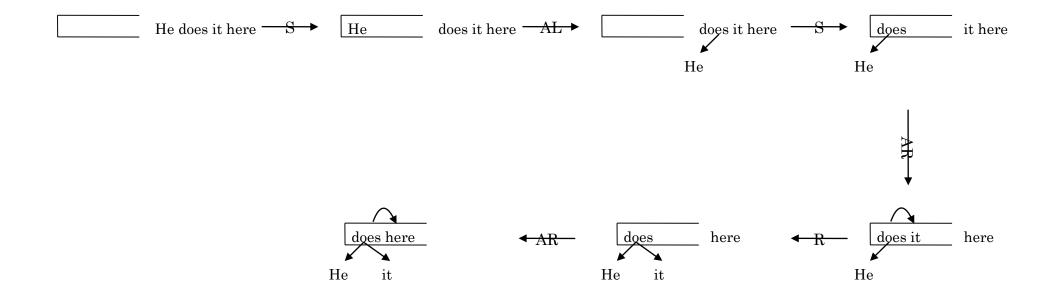
- S-SHIFT
- R-REDUCE
- AL-ARC-LEFT
- AR-ARC-RIGHT


- 二、 Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - ➢ Transition model

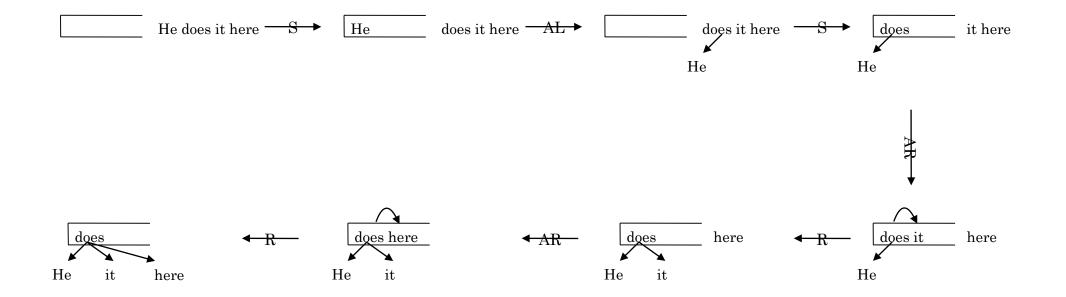
- S-SHIFT
- R-REDUCE
- AL-ARC-LEFT
- AR-ARC-RIGHT


- 二、Modeling Information Extraction End-to-end
 - ◆ End-to-end modeling
 - ➢ Transition model

- S-SHIFT
- R-REDUCE
- AL-ARC-LEFT
- AR-ARC-RIGHT


- 二、Modeling Information Extraction End-to-end
 - ◆ End-to-end modeling
 - ➤ Transition model

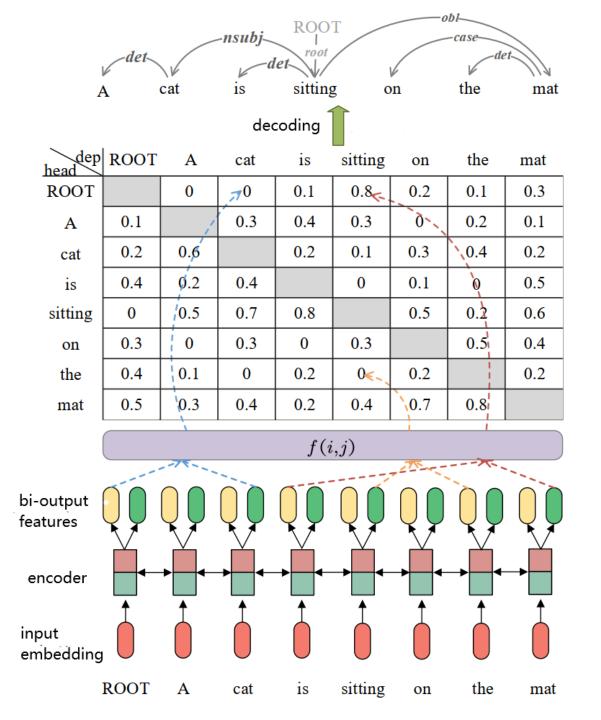
- S-SHIFT
- R-REDUCE
- AL-ARC-LEFT
- AR-ARC-RIGHT


- 二、Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - ➢ Transition model

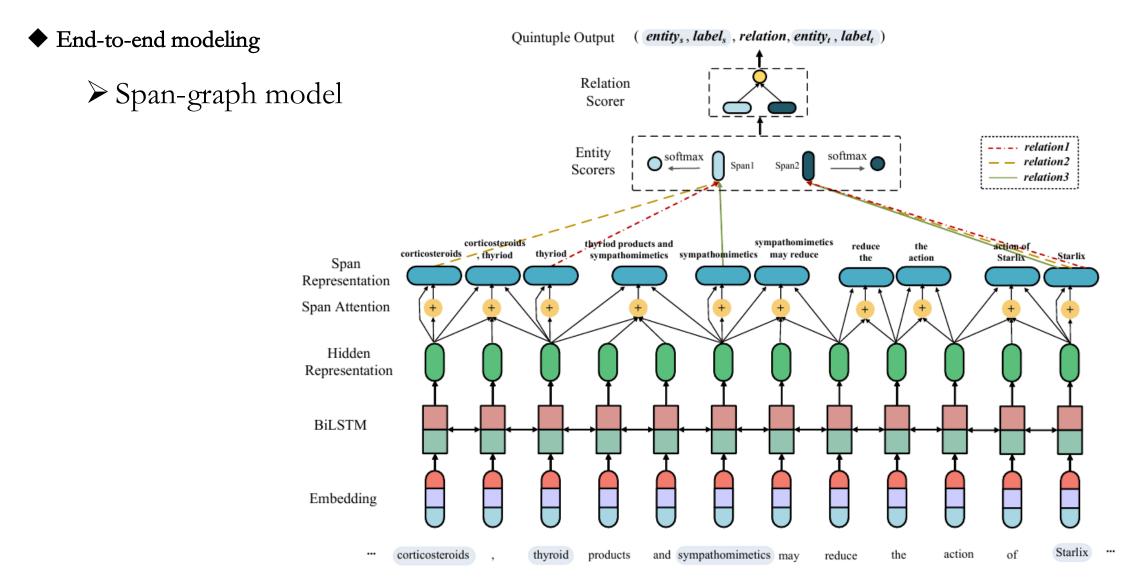
- S-SHIFT
- R-REDUCE
- AL-ARC-LEFT
- AR-ARC-RIGHT

- 二、Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - ➤ Transition model

- S-SHIFT
- R-REDUCE
- AL-ARC-LEFT
- AR-ARC-RIGHT


♦ End-to-end modeling

➢ Transition model

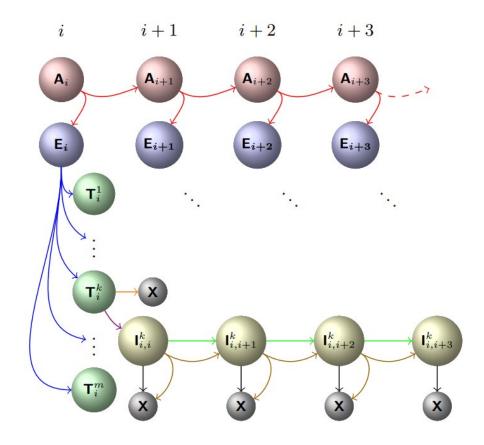

Sentence : He ₁ says ₂ the ₃ agency ₄ seriously ₅ needs ₆ money ₇ to ₈ develop ₉									
Step	Action	σ^{o}	α^{o}	λ	σ^r	$lpha^r$	β	Ptr	Y
0	-	[]	[]	Null	[]	[]	[1,,9]		
1	R-START	0	[]	$(1,1)^r$	[]	[]	[1,,9]	[<u>1</u> ,· · · ,9]	
2	SHIFT	0	[]	Null	[(1,1)]	[]	[2,,9]		
3	O-START	0	[]	$(2,2)^{o}$	[(1,1)]	[]	[<u>2</u> ,···,9]	[<u>2</u> ,···,9]	
4	ARC	0	[]	$(2,2)^{o}$	[]	[(1,1)]	[2,,9]		$Y \cup \{\langle (2,2)^o, (1,1)^r(hd) \rangle\}$
5	SHIFT	[(2,2)]	[]	Null	[(1,1)]	[]	[3,,9]		
6	R-START	[(2,2)]	[]	$(3,4)^r$	[(1,1)]	[]	[<u>3</u> ,···,9]	[3, <u>4</u> ,···,9]	
7	ARC	0	[(2,2)]	$(3,4)^r$	[(1,1)]	[]	[3,,9]		$Y \cup \{\langle (2,2)^o, (3,4)^r(tg)\rangle\}$
8	SHIFT	[(2,2)]	[]	Null	[(1,1),(3,4)]	[]	[4,,9]		
9	NO-START	[(2,2)]	[]	Null	[(1,1),(3,4)]	[]	[5,,9]		
10	O-START	[(2,2)]	[]	(5,6) ^o	[(1,1),(3,4)]	[]	[<u>5</u> ,···,9]	[5, <u>6</u> ,· · · ,9]	
11	ARC	[(2,2)]	[]	$(5,6)^{o}$	[(1,1)]	[(3,4]	[5,,9]		$Y \cup \{\langle (5,6)^o, (3,4)^r(hd) \rangle\}$
12	NO-ARC	[(2,2)]		(5,6) ^o		[(1,1),(3,4]	[5,,9]		
13	SHIFT	[(2,2),(5,6)]	[]	Null	[(1,1),(3,4]	[]	[6,,9]		
14	NO-START	[(2,2),(5,6)]	[]	Null	[(1,1),(3,4]	[]	[7,8,9]		
15	R-START	[(2,2),(5,6)]	[]	$(7,9)^r$	[(1,1),(3,4]	[]	[7,8,9]	[7,8, <u>9]</u>	
16	ARC	[(2,2)]	[(5,6)]	$(7,9)^r$	[(1,1),(3,4]	[]	[7,8,9]		$Y \cup \{\langle (5,6)^o, (7,9)^r(tg) \rangle\}$
17	NO-ARC	0	[(2,2),(5,6)]	$(7,9)^r$	[(1,1),(3,4]	[]	[7,8,9]		
18	SHIFT	[(2,2),(5,6)]	[]	Null	[(1,1),(3,4,(7,9)]	[]	[8,9]		
19	NO-START	[(2,2),(5,6)]	[]	Null	[(1,1),(3,4,((7,9)]		[9]		
20	NO-START	[(2,2),(5,6)]	[]	Null	[(1,1),(3,4,(7,9)]	[]	[]		

Contance. He cause the according approximate manage to devel

- 二、 Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - ➢ Span-graph model
 - Parsing task is regarded as the process of building a tree.
 - Searching a weighted graph to find the subgraph with the highest score.

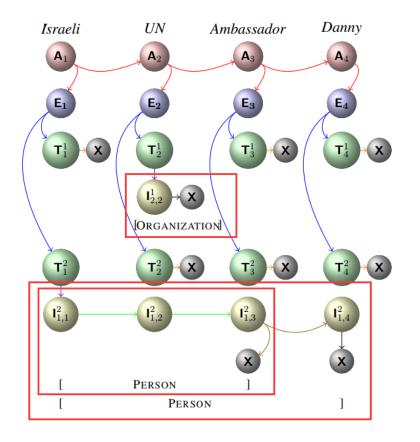
• Timothy Dozat, Christopher D. Manning. 2017. Deep Biaffine Attention for Neural Dependency Parsing. ICLR. 二、 Modeling Information Extraction End-to-end

• Span-Based Joint Entity and Relation Extraction with Transformer Pre-Training. ECAI 2020: 2006-2013

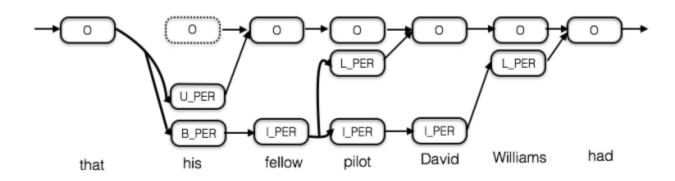

- 二、 Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - Hypergraph model

 \checkmark Standard graph

an edge only connects two vertices.


✓ Hypergraph

a hypergraph is a generalization of a graph, where an edge can connect <u>any number of</u> <u>vertices</u>.


- Joint Mention Extraction and Classification with Mention Hypergraphs. EMNLP 2015: 857-867
- Labeling Gaps Between Words: Recognizing Overlapping Mentions with Mention Separators. EMNLP 2017: 2608-2618
- Nested Named Entity Recognition Revisited. NAACL-HLT 2018: 861-871
- Neural Segmental Hypergraphs for Overlapping Mention Recognition. EMNLP 2018: 204-214

- ニ、Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - Hypergraph model

- A_i encodes all such mentions that start with the *i*-th or a later word
- E_i encodes all mentions that start exactly with the *i*-th word
- > \mathbf{T}_{i}^{k} represents all mentions of type k starting with the *i*-th word
- I^k_i represents all mentions of type k that contain the j-th word and start with the i-th word
- \succ X marks the end of a mention

- 二、Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - Hypergraph model

• One hyperedge presents a separate valid labeling of mention.

- 二、Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - ➤ Table-filling/Grid-tagging model
 - Sequence labeling scheme
 - [O,I,O,O,I]

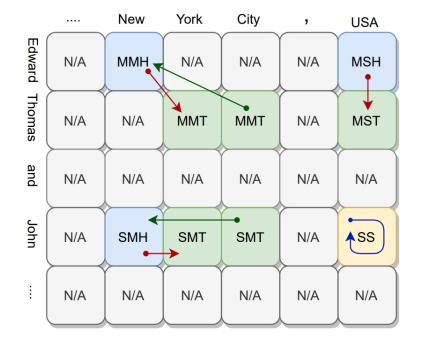
✓ 1-D sequential tagging✓ Extracting flat mention

✓ 2-D grid tagging
✓ Extracting complex mention
✓ Representing relation

二、Modeling Information Extraction End-to-end

♦ End-to-end modeling

Table-filling/Grid-tagging model

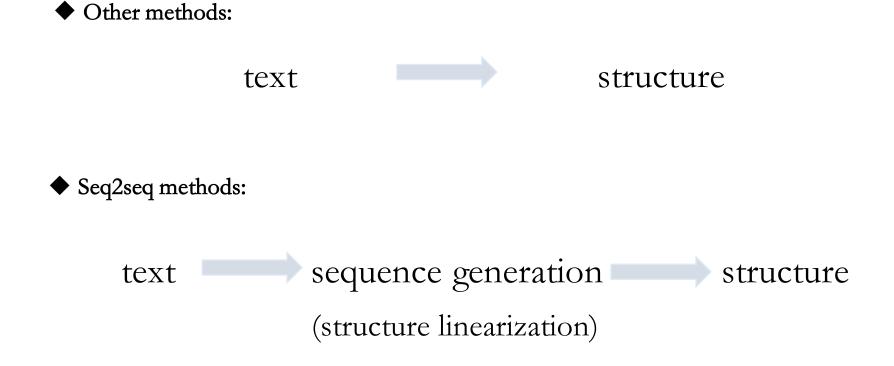

		The not dogs are top notch but av						iverage	relage conee		
		N	N	N	Ν	Ν	N	N	N	N	The
Tags	Meanings		Α	Α	N	Pos	Pos	N	N	N	hot
A	two words of word-pair (w_i, w_j) belong to	l		Α	N	Pos	Pos	N	N	N	dogs
	the same aspect term.										
0	two words of word-pair (w_i, w_j) belong to				Ν	N	N	N	N	N	are
	the same opinion term.					0	0	Ν	N	Ν	top
Ρ	two words of word-pair (w_i, w_j) respectively						0	N	N	N	notch
	belong to an aspect term and an opinion term,							N	N	N	but
	and they form opinion pair relation.							1	1	1	Jui
Ν	no above three relations for word-pair (w_i, w_j) .								0	Neu	average
										Α	coffee

The hot dogs are top notch but average coffee

• A Novel Global Feature-Oriented Relational Triple Extraction Model based on Table Filling. EMNLP (1) 2021: 2646-2656

• Grid Tagging Scheme for End-to-End Fine-grained Opinion Extraction. EMNLP (Findings) 2020: 2576-2585

- ニ、Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - Table-filling/Grid-tagging model


- ✓ Advantages:
 - Able to model many complex structure
 - Highly parallel computation
 - Strong representation capability
 - Easy intra-feature modeling/encoding
 - Easy re-production

- A Novel Global Feature-Oriented Relational Triple Extraction Model based on Table Filling. EMNLP (1) 2021: 2646-2656
- Grid Tagging Scheme for End-to-End Fine-grained Opinion Extraction. EMNLP (Findings) 2020: 2576-2585

- \Rightarrow Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - ➢ Seq2seq (encoder-decoder) model

✓ Advantages:

- Linearizing everything, sequence in sequence out
- Taking better advantage of GLM

二、Modeling Information Extraction End-to-end

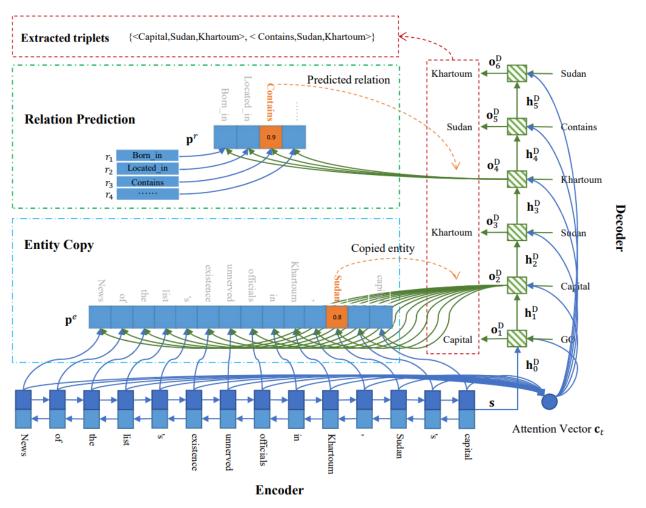
♦ End-to-end modeling

Seq2seq (encoder-decoder) model

Copy mechanism

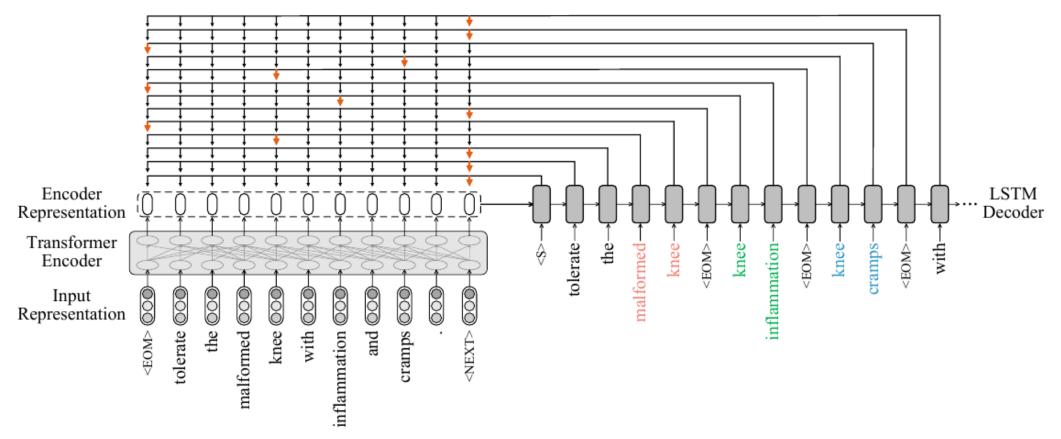
Pointer Net

□ Generative LM

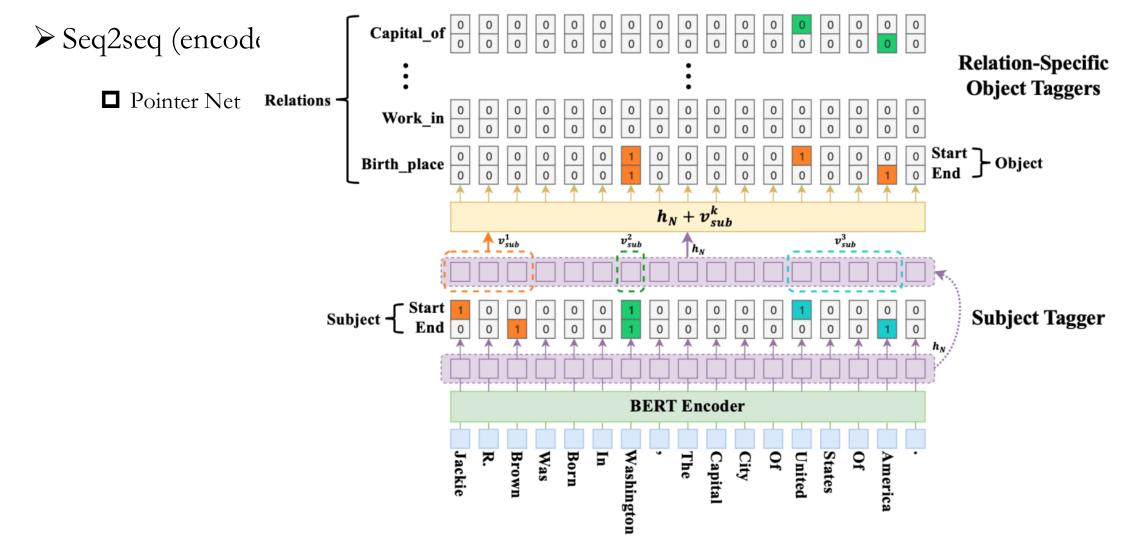

• + Prompt learning

ニ、Modeling Information Extraction End-to-end

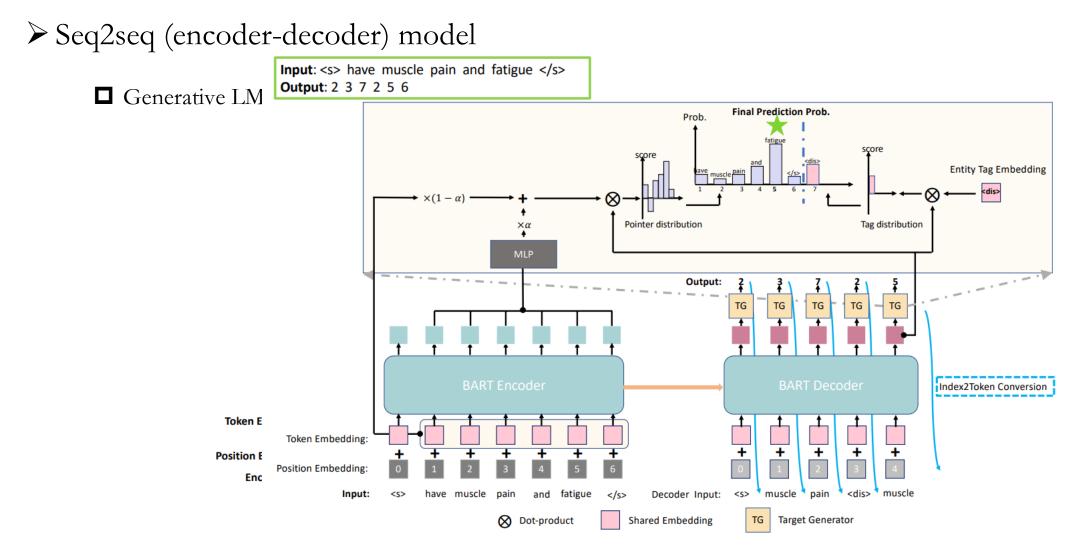
 \blacklozenge End-to-end modeling


➢ Seq2seq (encoder-decoder) model

Copy mechanism

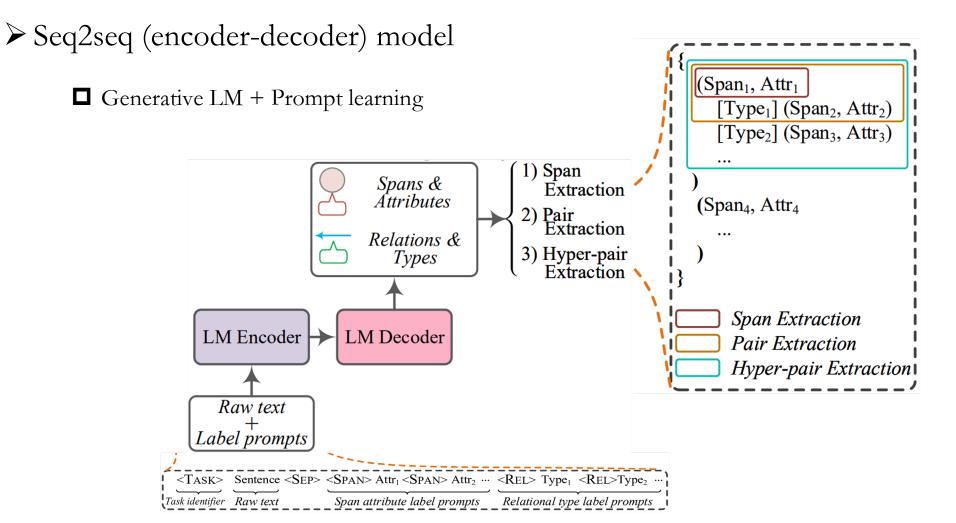

• Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism. ACL (1) 2018: 506-514

- ニ、Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - Seq2seq (encoder-decoder) model
 - Pointer Net


ニ、Modeling Information Extraction End-to-end

♦ End-to-end modeling

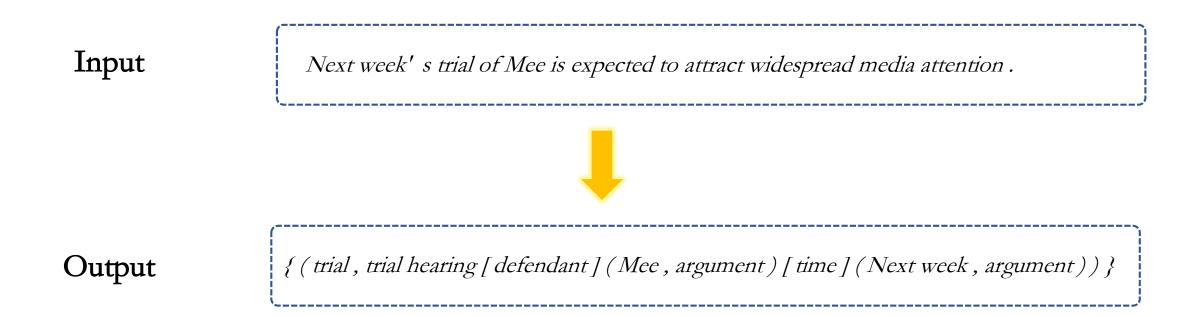
二、Modeling Information Extraction End-to-end


♦ End-to-end modeling

• A Unified Generative Framework for Various NER Subtasks. ACL/IJCNLP (1) 2021: 5808-5822

• A Unified Generative Framework for Aspect-based Sentiment Analysis. ACL/IJCNLP (1) 2021: 2416-2429

- 二、 Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling


• Unified Structure Generation for Universal Information Extraction. ACL (1) 2022: 5755-5772

ニ、Modeling Information Extraction End-to-end

♦ End-to-end modeling

➢ Seq2seq (encoder-decoder) model

□ Generative LM + Prompt learning

• Unified Structure Generation for Universal Information Extraction. ACL (1) 2022: 5755-5772

- 二、Modeling Information Extraction End-to-end
 - ♦ End-to-end modeling
 - ➢ Transforming into MRC-QA
 - Core idea:
 - ✓ Re-formatting the raw structure parsing job as in a machine reading comprehension & QA task, based on the pointer network.
 - ✓ With MRC framework, treating the given input text and structure labels and manually constructed prompt queries/questions as semantic prior information, for better task prediction.

- A Unified MRC Framework for Named Entity Recognition. ACL 2020: 5849-5859
- An MRC Framework for Semantic Role Labeling. CoRR abs/2109.06660 (2021)
- A Joint Training Dual-MRC Framework for Aspect Based Sentiment Analysis. AAAI 2021: 13543-13551
- Dependency Parsing as MRC-based Span-Span Prediction. ACL (1) 2022: 2427-2437
- MRC4BioER: Joint extraction of biomedical entities and relations in MRC framework. J. Biomed. Informatics 125: 103956 (2022)

二、 Modeling Information Extraction End-to-end

♦ End-to-end modeling

➢ Transforming into MRC-QA

• Constructing query templates.

(1) ABSA as MRC

Original training example:

• input text: The ambience was nice , but service was not so great.

• annotations: (ambience, nice, positive), (service, no so great, negative)

Converted training example 1:

• **query-1**: Find the *aspect terms* in the text.

• answer-1: ambience, service

• **query-2**: Find the *sentiment polarity* and *opinion terms* for **ambience** in the text.

• answer-2: (nice, positive)

Converted training example 2:					
•	query-1: Find the aspect terms in				
	the text.				
•	answer-1: ambience, service				
•	query-2: Find the sentiment				

polarity and *opinion terms* for service in the text.

• answer-2: (not so great, negative)

• An MRC Framework for Semantic Role Labeling. CoRR abs/2109.06660 (2021)

• A Joint Training Dual-MRC Framework for Aspect Based Sentiment Analysis. AAAI 2021: 13543-13551

(1) SRL as MRC

Input Sentence The stock has been beaten down for two days. Multiple-Choice MRC for Predicate Disambiguation Question: What is the sense of predicate "beaten"? A. (Cause) pulsating motion that often makes sound B. push, cause motion C. win over some competitor Answer: B **Extractive MRC for Argument Labeling** Question for A0: What are the arguments with meaning "causer of motion"? Answer: No Answer Question for A1: What are the arguments with meaning "thing moving"? Answer: the stock Question for A2: What are the arguments with meaning "direction, destination"? Answer: down Ouestion for TMP: What are the time modifiers of predicate "beaten"? Answer: for two days

二、Modeling Information Extraction End-to-end

◆ Trends for end-to-end modeling: What to do next?

Unifying & Sharing

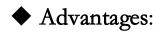
> Two key challenges in IE:

- more accurate boundary detection of mention spans.
- more intelligent relation assignment between mentions.

二、 Modeling Information Extraction End-to-end

◆ Trends for end-to-end modeling: What to do next?

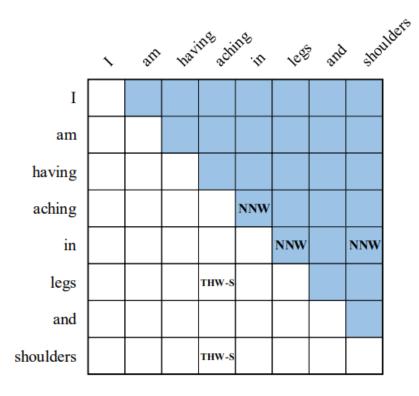
Some unsolved challenges:


- Unnormalized information extraction/structure parsing
 - IE in social media text, casual/colloquial expressions
 - Financial IE, numeric mentions, numeric-text mixed mentions
- Linguistic challenges
 - Coreference
 - Word ambiguity
- Multimodal IE
 - Text + Image
 - Text + Image + Audio

- 二、Modeling Information Extraction End-to-end
 - ◆ Trends for end-to-end modeling: What to do next?
 - ➢ Joint prediction of a homogeneous type of tasks
 - Core idea:

Jointly modeling many tasks in one same topic with one unified framework.

Tasks in homogeneous type essentially share same/common features.

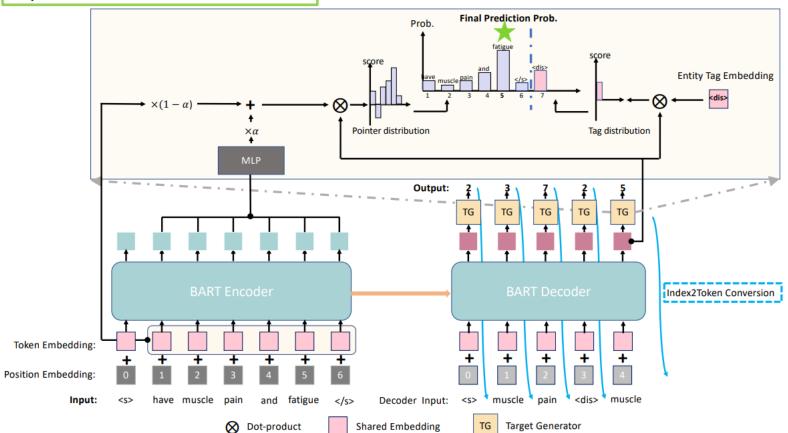


Unified modeling, one model for many tasks, Better feature reuse, collaboration, Stronger capability on few-shot learning.

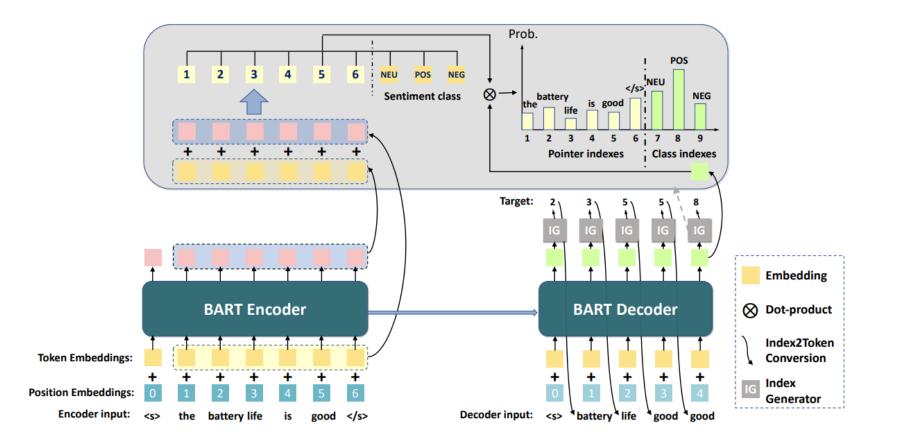
- 二、Modeling Information Extraction End-to-end
 - ◆ Trends for end-to-end modeling: What to do next?

➢ Joint prediction of a homogeneous type of tasks

□ Unified end-to-end NER

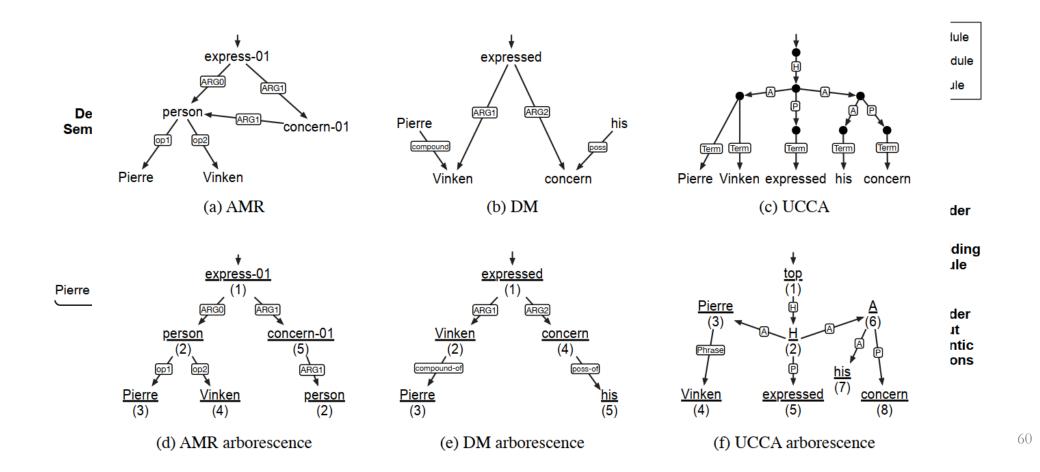


- 二、Modeling Information Extraction End-to-end
 - ◆ Trends for end-to-end modeling: What to do next?


 \succ Joint prediction of a homogeneous type of tasks

□ Unified end-to-end NER

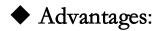
Input: <s> have muscle pain and fatigue </s> Output: 2 3 7 2 5 6


- 二、Modeling Information Extraction End-to-end
 - ◆ Trends for end-to-end modeling: What to do next?
 - \blacktriangleright Joint prediction of a homogeneous type of tasks
 - □ Unified end-to-end ABSA

- 二、Modeling Information Extraction End-to-end
 - ◆ Trends for end-to-end modeling: What to do next?

Joint prediction of a homogeneous type of tasks

□ Unified syntax/semantic parsing


- 二、Modeling Information Extraction End-to-end
 - ◆ Trends for end-to-end modeling: What to do next?
 - Universal extraction

• Core idea:

Jointly modeling ALL IE task with one unified framework.

• Feasibility:

All IE tasks essentially depend mostly on **boundary detection** & relation assignment.

Universal modeling, one model for ALL tasks, especially for real-world production, Best feature reuse, collaboration, With PLM, lower dependence on in-demand annotated training data, Stronger capability on few-shot learning (cross-task, cross-domain), ...

Easier to receive big impact in research community.

- 二、Modeling Information Extraction End-to-end
 - ◆ Trends for end-to-end modeling: What to do next?
 - Universal extraction
 - ◆ Key requirements & challenge:
 - Different tasks in different type/genre rely much on learning <u>distinct & unique features</u>.

• So, how to properly coordinate the feature learning and best satisfy all tasks' specific feature?

- 二、Modeling Information Extraction End-to-end
 - ◆ Trends for end-to-end modeling: What to do next?
 - Universal extraction

TODO

- □ Modeling UIE with better & sophisticated pretraining language models.
- □ More feasible modeling scheme of UIE, e.g., text-to-table.
- Minimizing the gap between different feature spaces of different tasks, e.g., constructing more sophisticated optimization algorithm. (Machine learning)
- With better and plausible universal feature corporation:
 - External knowledge graph
 - Syntactic features
- □ Cross-lingual universal structure learning/information extraction.
- □ Multimodal universal information extraction.

Thank you